PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Mix-substituted phthalocyanines of a “push–pull”-type and their metal complexes as prospective nanostructured materials for optoelectronics

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
To study the influence of structural features of phthalocyanine (Pc) derivatives on their physico-chemical properties in bulk and thin films, 23 new phthalocyanines with different quantity and ratio of donor (alkyloxy-groups, in fragment “A”) and acceptor (Cl-, in fragment “B”) substituents in one molecule of the A3B, ABAB and AABB types with varied length of alkyloxy-substituents and their metal complexes were designed and synthesized. A comparative analysis of spectral, mesomorphic and photoelectric properties of these mix-substituted phthalocyanines of a “push–pull” type was performed. It was shown that non-peripheral substitution by alkyloxy-fragments in hetero-substituted Pcs (similar to homo-substituted Pc) leads to red-shifting of the Q-band into near-IR region. The intensity of photoluminescence, position of peaks and their splitting are strongly connected with chemical structure of Pcs and the type of solvent. In contrast to non-mesogenic octyloxy-Pc (A4) having alkyloxy-substituents in non-peripheral positions, 22 of 23 synthesized compounds possess columnar mesomorphism. The change of donor–acceptor ratio can influence the type of mesophase. A new approach to the creation of materials for optoelectronics is proposed and implemented, which includes design of compounds possessing vitrification from mesophase with maintenance of a columnar order, absorption in the near IR-region of the spectrum and good performance electrophysical characteristics simultaneously.
Rocznik
Strony
127--136
Opis fizyczny
Bibliogr. 46 poz., il., rys., wykr.
Twórcy
  • Nanomaterials Research Institute, Ivanovo State University, Ivanovo 153025, Russia
  • Nanomaterials Research Institute, Ivanovo State University, Ivanovo 153025, Russia
autor
  • Nanomaterials Research Institute, Ivanovo State University, Ivanovo 153025, Russia
  • Shubnikov Institute of Crystallography of the Federal Scientific Research Centre “Crystallography and Photonics” of the Russian Academy of Sciences, Moscow 119333, Russia
  • Nanomaterials Research Institute, Ivanovo State University, Ivanovo 153025, Russia
  • Research Institute of Macroheterocycles, Ivanovo State University of Chemistry and Technology, Ivanovo 153000, Russia
  • Research Institute of Macroheterocycles, Ivanovo State University of Chemistry and Technology, Ivanovo 153000, Russia
  • Shubnikov Institute of Crystallography of the Federal Scientific Research Centre “Crystallography and Photonics” of the Russian Academy of Sciences, Moscow 119333, Russia
  • Shubnikov Institute of Crystallography of the Federal Scientific Research Centre “Crystallography and Photonics” of the Russian Academy of Sciences, Moscow 119333, Russia
Bibliografia
  • [1] P. Gregory, Steamrollers, sports cars and security; phthalocyanine progress through the ages, J. Porphyrins Phthalocyanines 3 (1999) 468–476.
  • [2] S. Chandrasekhar, B. K. Sadashiva, K. A. Suresh, Liquid crystals of disk-like molecules, Pramana 9 (1977) 471–480.
  • [3] S. Sergeev, E. Pouzet, O. Debever, J. Levin, J. Gierschner, J. Cornil, R. G. Aspe, Y. H. Geerts, Liquid crystalline octaalkoxycarbonyl phthalocyanines: design, synthesis, electronic structure, self-aggregation and mesomorphism, J. Mater. Chem. 17 (2007) 1777–1784.
  • [4] C. Piechocki, J. Simon, A. Scoulios, D. Guillon, P. Weber, Annelides. 7. Discotic mesophases obtained from substituted metallophthalocyanines. Toward liquid crystalline one-dimensional conductors, J. Am. Chem. Soc. 104 (19) (1982) 5245–5247.
  • [5] (a) M. K. Engel, P. Bassoul, L. Bosio, H. Lehmann, M. Hanack, J. Simon, Influence of chain length on the structural properties of octa-alkyl substituted phthalocyanines, Liq. Cryst. 15 (1993) 709–722;
  • (b) M. J. Cook, Properties of some alkyl substituted phthalocyanines and related macrocycles, Chem. Rec. 2 (2002) 225–236.
  • [6] (a) E. Venuti, R. G. D. Valle, I. Bilotti, A. Brillante, M. Cavallini, A. Calò, Y. H. Geerts, Absorption, photoluminescence, and polarized raman spectra of a fourfold alkoxy-substituted phthalocyanine liquid crystal, J. Phys. Chem. C 115 (24) (2011) 12150–12157;
  • (b) A. I. Smirnova, N. V. Usol’tseva, Lyotropic mesomorphism of 2,3,9,10,16,17,23,24-octa(octyloxy)phthalocyanine and its metal complexes in organic solvents, Liq. Cryst. and their Appl. 2 (2002) 96–107.
  • [7] A. N. Cammidge, M. J. Cook, S. D. Haslam, R. M. Richardson, K. J. Harrison, Mesomorphic properties of some 1,4,8,11,15,18,22,25-octa-alkoxymethylphthalocyanines, Liq. Cryst. 14 (6) (1993) 1847–1862.
  • [8] (a) N. V. Usol’tseva, V. V. Bykova, N. M. Kormilitsyn, G. A. Ananieva, V. E. Maizlish, The dependence of lyotropic mesomorphism and intermolecular interactions of the carboxyphthalocyaninene derivatives on the metal nature Il, Nuovo Cimento 12D (1990) 1237–1242;
  • (b) N. Usol’tseva, V. Bykova, G. Ananjeva, A. Smirnova, G. Shaposhnikov, V. Maizlish, E. Kudrik, A. Shirokov, Lyomesomorphism of carboxyl- and alkoxycarbonyl substituted phthalocyanine copper complexes, Mol. Cryst. Liq. Cryst. 352 (2000) 45–57;
  • (c) A. I. Smirnova, V. E. Maizlish, N. V. Usol’tseva, V. V. Bykova, G. A. Anan’eva, E. V. Kudrik, A. V. Shirokov, G. P. Shaposhnikov, Synthesis and liquid crystalline properties of copper tetra-4-(n-alkoxycarbonyl)phthalocyanines, Russ. Chem. Bull. 49 (1) (2000) 132–139.
  • [9] S. Gaspard, A. Hochaptel, R. Viovy, A lyotropic phase from tetracarboxylated copper phthalocyanines, in: Proc. of the Conference on Liquid Crystals of One and Two Dimension Order and their Applications, Garmish Partenkirchen 298, 1980.
  • [10] N. Usol’tseva, Lyotropic behavior of sheet-like chemical compounds: amphotropy of phthalocyanine and porphyrin derivatives, Mol. Cryst. Liq. Cryst. 288 (1996) 201–210.
  • [11] N. Usol’tseva, V. Bykova, A. Semeikin, G. Ananjeva, A. Smirnova, V. Negrimovski, Lyotropic phase behaviour of phthalocyanine derivatives in apolar organic solvents, Mol. Cryst. Liq. Cryst. 304 (1997) 201–206.
  • [12] L. Sosa-Vargas, F. Nekelson, D. Okuda, M. Takahashi, Y. Matsuda, Q.-D. Dao, Y. Hiroyuki, A. Fujii, M. Ozaki, Y. Shimizu, Liquid crystalline and charge transport properties of novel non-peripherally octasubstituted perfluoroalkylated phthalocyanines, J. Mater. Chem. C 3 (2015) 1757–1765.
  • [13] Y. Zang, P. Ma, P. Zhu, X. Zhang, Y. Gao, D. Qi, Y. Bian, N. Kobayashi, J. Jiang, 2,3,9,10,16,17,23,24-Octakis(hexylsulfonyl)phthalocyanines with good n-type semiconducting properties. Synthesis, spectroscopic, and electrochemical characteristics, J. Mater. Chem. 21 (2011) 6515–6524.
  • [14] E. K. Treacher, G. J. Clarkson, N. B. McKeown, Stable glass formation by a hexagonal ordered columnar mesophase of a low molar mass phthalocyanine derivative, Liq. Cryst. 19 (6) (1995) 887–889.
  • [15] M. Yoshioka, K. Ohta, M. Yasutake, Flying-seed-like liquid crystals. Part 4: novel series of bulky substituents inducing mesomorphism instead of using long alkyl chains, RSC Adv. 5 (2015) 13828–13839.
  • [16] A. I. Smirnova, N. V. Usol’tseva, X-ray diffraction investigation of two mesomorphic copper(II) complexes of tetra-4-[(4-alkoxycarbonyl)phenyleneoxy)phthalocyanine, Crystallogr. Rep. 51 (2006) 258–264.
  • [17] S. A. Znoiko, V. E. Maizlish, G. P. Shaposhnikov, I. G. Abramov, G. A. Ananieva, V. V. Bykova, N. V. Usol’tseva, Synthesis and properties of benzotriazolyl-substituted phthalocyanines with bulky substituents, Liq. Cryst. and their Appl. 1 (2009) 24–32.
  • [18] (a) N. Usol’tseva, V. Bykova, G. Ananjeva, N. Zharnikova, Mesomorphism and glass formation of phthalocyanine metal complexes with bulky substituents, Mol. Cryst. Liq. Cryst. 411 (2004), 329 [1371]–336 [1378];
  • (b) Y. Takagi, K. Ohta, S. Shimosugi, T. Fujiia, E. Itoh, Flying-seed-like liquid crystals 2: unprecedented guidelines to obtain liquid crystalline compounds, J. Mater. Chem. 22 (2012) 14418–14425.
  • [19] (a) M. Ahmida, R. Larocque, M. S. Ahmed, A. Vacaru, B. Donnio, D. Guillon, S. H. Eichhorn, Halide effect in electron rich and deficient discotic phthalocyanines, J. Mater. Chem. 20 (7) (2010) 1292–1303;
  • (b) S. A. Znoiko, V. E. Maizlish, G. P. Shaposhnikov, V. V. Bykova, N. V. Usol’tseva, Mesomorphism of octasubstituted phthalocyanines, combined benzotryazolyl and aryloxy-groups on periphery, Liq. Cryst. and their Appl. 4 (2011) 69–79.
  • [20] (a) A. N. Cammidge, R. J. Bushby, Synthesis and structural features, in: D. Demus, J. Goodby, G. W. Gray, H.-W. Spiess, V. Vill (Eds.), Handbook of Liquid Crystals, 2B, Wiley–VCH, New York, Chichester, Brisbane, Singapore, Toronto, 1998, pp. 693–748;
  • (b) N. V. Usol’tseva, V. V. Bykova, N. V. Zharnikova, New glassing mesogens, in: Achievements of Liquid Crystals Research, Ivanovo State University Publishing House, 2007, pp. 4–26.
  • [21] G. de la Torre, P. Vázques, F. Agulló-López, T. Torres, Phthalocyanines and related compounds: organic targets for nonlinear optical application, J. Mater. Chem. 8 (1998) 1671–1683.
  • [22] Y. Wu, H. Tian, K. Chen, Y. Liu, D. Zhu, Synthesis and properties of soluble phthalocyanines containing tetra- or octa-alkyloxy substituents, Dyes Pigments 37 (4) (1998) 317–325.
  • [23] M. J. Cook, M. F. Daniel, K. J. Harrison, N. B. McKeown, A. J. Thomson, 1,4,8,11,15,18,22,25-Octa-alkyl phthalocyanines: new discotic liquid crystal materials, J. Chem. Soc., Chem. Commun. (1987) 1086–1088.
  • [24] D. Wohrle, G. Schnurpfeil, S. G. Makarov, A. Kazarin, O. N. Suvorova, Practical application of phthalocyanines – from dyes and pigments to materials for optical, electronic and photo-electronic devices, Macroheterocycles 5 (3) (2012) 191–202.
  • [25] B. Kippelen, J.-L. Bredas, Organic photovoltaics, Energy Environ. Sci. 2 (2009) 251–261.
  • [26] E. Moulin, E. Busseron, N. Giuseppone, Self-assembled supramolecular materials in organic electronics, in: N. Koch (Ed.), RSC Smart Materials No. 12. Supramolecular Materials for Opto-Electronics, The Royal Society of Chemistry, 2015, pp. 1–52.
  • [27] Yu. N. Luponosov, J. Min, A. N. Solodukhin, O. V. Kozlov, M. A. Obrezkova, S. M. Peregudova, T. Ameri, S. N. Chvalun, M. S. Pshenichnikov, C. J. Brabec, S. A. Ponomarenko, Effects of electron-withdrawing group and electron-donating core combinations on physical properties and photovoltaic performance in D–π–A star-shaped small molecules, Organ. Electron. 32 (2016) 157–168.
  • [28] M. G. Walter, A. B. Rudine, C. C. Wamser, Porphyrins and phthalocyanines in solar photovoltaic cells, J. Porphyrins Phthalocyanines 14 (2010) 759–792.
  • [29] N. V. Usol’tseva, A. I. Smirnova, A. V. Kazak, V. V. Sotsky, I. Yu. Luk’janov, N. E. Galanin, G. P. Shaposhnikov, Nanostructured materials based on mesogenic mix-substituted phthalocyanines V. F. Razumov, M. V. Klyuev, Organic and Hybrid Nanomaterials: Preparation and Prospectives of Applications Ivanovo State University Publishing House Ivanovo 2015; 557-623.
  • [30] (a) N. Zharnikova, N. Usol’tseva, E. Kudric, M. Thelakkat, Synthesis, mesomorphism and electrochemical properties of tetrasubstituted zinc and copper phthalocyanines, J. Mater. Chem. 19 (2009) 3161–3167;
  • (b) N. V. Usol’tseva, V. V. Bykova, Glassing discotic nanomaterisla for optoelectronics, in: V. F. Razumov, M. V. Klyuev (Eds.), Nanostructural Materials for Storage and Transformation Energy Systems, Ivanovo State University Publishing House, Ivanovo, 2008, pp. 348–379.
  • [31] N. E. Galanin, G. P. Shaposhnikov, I. A. Smirnova, V. A. Kazak, N. V. Usol’tseva, Synthesis, spectral and mesomorphic properties of mix-substituted phthalocyanines based on 3,6-dioctyloxyphthalonitrile and 4,5-dichlorophthalonitrile, and their holmium complexes, Liq. Cryst. and their Appl. 14 (4) (2014) 74–84.
  • [32] N. E. Galanin, G. P. Shaposhnikov, Synthesis and spectral properties of unsymmetrical phthalocyanines from 3,6-dioctyloxyphthalonitrile and 3,4,5,6-tetrachlorophthalonitrile, Russ. J. Gen. Chem. 82 (10) (2012) 1734–1739.
  • [33] N. V. Usol’tseva, A. I. Smirnova, A. V. Kazak, М. I. Kovaleva, N. E. Galanin, G. P. Shaposhnikov, V. V. Bodnarchuk, S. V. Yablonskii, Optical, mesomorphic andphotoelectric properties of the mix-substituted phthalocyanine ligands and their metal complexes of the A3B type, Liq. Cryst. and their Appl. 15 (4) (2015) 56–71.
  • [34] L. M. Blinov, Physical properties and applications of Langmuir monomolecularand multimolecular structures, Usp. Khim. 52 (8) (1983) 1263–1300.
  • [35] N. V. Usol’tseva, A. V. Kazak, I. Yu. Luk’yanov, V. V. Sotsky, A. I. Smirnova, S. G. Yudin, G. P. Shaposhnikov, N. E. Galanin, Influence of molecular structure peculiarities of phthalocyanine derivatives on their supramolecular organization and properties in the bulk and thin films, Phase Trans. 87 (8) (2014) 801–813.
  • [36] I. Yu. Luk’yanov, N. V. Usol’tseva, N. E. Galanin, M. V. Korelchuk, G. P. Shaposhnikov, S. G. Yudin, Influence of molecular structure of unsymmetrical “push–pull phthalocyanines on their optical properties in solutions and thin films, Liq. Cryst. and their Appl. 2 (2013) 80–89.
  • [37] A. V. Kazak, N. V. Usol’tseva, A. I. Smirnova, Yu. A. Dyakova, М. A. Мɑrchenkova, B. V. Nabatov, E. Yu. Tereschenko, I. V. Kholodkov, Optical properties and supramolecular organization of mix-substituted phthalocyanine holmium complex in Langmuir–Schaefer films, Macroheterocycles 8 (3) (2015) 284–289.
  • [38] A. M. Hor, R. O. Loutfy, Photovoltaic properties of CdS/phthalocyanineheterojunction cells, Can. J. Chem. 61 (5) (1983) 901–905.
  • [39] G. P. Shaposhnikov, V. P. Kulinich, V. E. Maizlish, Modifitsirovannye ftalotsianiny i ikh strukturnye analogi (Modified phthalocyanines and their structural analogues), edited by O. I. Koyfman, M.: KRASAND, 2012.
  • [40] L. P. Kazakova, A. A. Lebedev, E. A. Lebedev, Transient space charge limited current in porous silicon, Semiconductors 31 (5) (1997) 517–518.
  • [41] A. D. Tavares, Photovoltaic effect in crystals of organic semiconductors as a function of wavelength, J. Chem. Phys. 53 (6) (1970) 2520–2524.
  • [42] A. D. Tavares, New method for the determination of space charge in dielectrics, J. Chem. Phys. 59 (4) (1973) 2154–2155.
  • [43] S. V. Yablonskii, S. G. Yudin, V. V. Bodnarchuk, E. V. Levin, E. A. Soto-Bustamante, K. Ioshino, Photodetectors with internal amplification based on copper complex of phthalocyanine, Liq. Cryst. and their Appl. 4 (2013) 34–44.
  • [44] C. W. Tang, Two-layer organic photovoltaic cell, Appl. Phys. Lett. 48 (1986)183–185.
  • [45] C. W. Schlenker, V. S. Barlier, S. W. Chin, M. T. Whited, R. E. McAnally, S. R. Forrest, M. E. Thompson, Cascade organic solar cells, Chem. Mater. 23 (18) (2011) 4132–4140.
  • [46] A I. Smirnova, N. I. Giricheva, K. M. Soldatova, M. Das, N. V. Usol’tseva, DFT calculations for design of cascade organic solar sell based on phthalocyanine of A3B type, Liq. Cryst. and their Appl. 16 (4) (2016) 47–54.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-2cdd3a51-f9db-4dd8-9af4-d786ef968719
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.