PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Integration of Delphi Technique and Analytical Hierarchy Process Method in Assessment the Groundwater Potential Influence Criteria: A Case Study of the Ba River Basin

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Water is a boon for all living beings over the world and groundwater is considered one of the indispensable natural sources of potable water. It is necessary to assess and predict the groundwater potential to provide insights for decision-makers for proper planning and management of groundwater. The occurrence of groundwater depends on hydrological, ecological, climate, geological, and physiographical criteria. The purpose of the present study is to choose and attribute scores to all various factors that affected groundwater prospects in the Ba river basin. Firstly, the Delphi method was applied in the expert-based survey to choose six parameters that are considered as influencing factors, namely, lineament density, rainfall, slope, land cover, drainage density, and geology. Then, the weights for the various factors were generated using the Analytic Hierarchy Process (AHP) approach which allows the pairwise comparison of criteria influencing the potential areas. The consistency analyses show that the findings were consistent with a previous study. The consistency and sensitivity analyses showed that the obtained results were coherent, providing the weight vector of the achievable criteria that affect the groundwater prospect in the study area. The study reveals that lineament density and slope are criteria affecting the most prominent groundwater occurrence with 35.1% and 20.1%, respectively. However, the influence of other factors (rainfall, land cover, drainage density, and geology) is not visible. These criteria are assigned to the small weights and do not have a significant influence on the groundwater potential. The study results provide baseline information, which needs to be taken into account to control and manage groundwater potentiality.
Rocznik
Tom
Strony
91--102
Opis fizyczny
Bibliogr. 34 poz., rys., tab., wykr.
Twórcy
  • Thuyloi University, Department of Surveying, Hanoi, Vietnam
  • Vietnam National University, Hanoi, Vietnam
Bibliografia
  • 1. World Water Assessment Programme (WWAP), 2009. Water in a changing world. World Water Development Report 3. UNESCO, Paris.
  • 2. Ahmadi, H., Kaya, O.A., Babadagi, E., Savas T., Pekkan, E., 2021. GIS-Based Groundwater Potentiality Mapping Using AHP and FR Models in Central Antalya, Turkey, Environmental Sciences Proceedings, 5(11), https://doi.org/10.3390.
  • 3. Asian Development Bank., 2009. Water Vital for Vietnam’s Future.
  • 4. Das, S., Pardeshi, S.D., 2018. Morphometric analysis of Vaitarna and Ulhas river basins, Maharashtra, India: using geospatial techniques, Appl Water Sci, 8(6):158.
  • 5. Doke, A.B., Zolekar, R.B., Patel, H., Das, S., 2021. Geospatial mapping of groundwater potential zones using multi-criteria decision-making AHP approach in a hard rock basaltic terrain in India, Ecological Indicators, 127, https://doi.org/10.1016/j.ecolind.2021.107685.
  • 6. Aykut, T., 2021. Determination of groundwater potential zones using Geographical Information Systems (GIS) and Analytic Hierarchy Process (AHP) between Edirne-Kalkansogut (Northwestern Turkey), Groundwater for Sustainable Development, 12, https://doi.org/10.1016/j.gsd.2021.100545.
  • 7. Hamza, A., Abiyot, L.K., Engida, E.D., & Dereje, L.B., 2021. AHP based analysis of groundwater potential in the western escarpment of the Ethiopian rift valley, Geology, Ecology, and Landscapes, DOI: 10.1080/24749508.2021.1952761.
  • 8. Saranya, T., and Saravanan S., 2020. Groundwater potential zone mapping using analytical hierarchy process (AHP) and GIS for Kancheepuram District, Tamilnadu, India, Modeling Earth Systems and Environment, 6: 1105-1122.
  • 9. Ahmed, T.H., Al-Manmi, D.A.M., 2019. Delineation of Groundwater productivity Zones with the integration of GIS and Remote Sensing methods, Bazian Basin, Sulaymaniyah, Kurdistan Region, Iraq, Journal of Basrah Researches (Sciences), 45(2): 289-309.
  • 10. Das, S., Pardeshi, S.D., 2018. Integration of different influencing factors in GIS to delineate groundwater potential areas using IF and FR techniques: a study of Pravara basin, Maharashtra, India. Applied Water Science, 8(197), https://doi.org/10.1007/s13201-018-0848-x.
  • 11. Keeney, S., Hasson, F., McKenna, H. P., 2001. A critical review of the Delphi technique as a research methodology for nursing, International Journal of Nursing Studies 38(2): 195–200. http://dx.doi.org/10.1016/S0020-7489(00)00044-4.
  • 12. Ameyaw, E.E., Hu, Y., Shan, M., Chan, A.P.C., Le, Y., 2014. Application Delphi method in construction engineering And management research: a quantitative perspective, Journal of Civil Engineering and Management, 22(8). http://dx.doi.org/10.3846/13923730.2014.945953.
  • 13. Boulomytis, V.T.G, Zuffo, A.C., and Imteaz, M.A., 2019. Detection of flood influence criteria in ungauged basins on a combined Delphi-AHP approach, Operations Research Perspectives, 6.
  • 14. Dung, N.B., Long, N.Q., An, D.T., Minh, D.T. 2021a. Multi-geospatial flood hazard modelling for a large and complex river basin with data sparsity: a case study of the Lam River Basin, Vietnam, Earth Syst Environ. https://doi.org/10.1007/s41748-021-00215-8.
  • 15. Liu, J., Xu, Z., Chen, F., Chen, F., and Zhang, L., 2019. Flood hazard mapping and assessment on the Angkor world heritage site, Cambodia, Remote Sensing, 11: 98.
  • 16. Dung, N.B., Minh, D.T., An, B.N., Nga, N.Q. 2021b. Assessment of vulnerability In agricultural land in flood prone Areas and application of mobile smart Phone in providing flood hazard Information in lam river Basin (Vietnam), Sustainable development of mountain territories, 2(48): 254-265, DOI: 10.21177/1998-4502-2021-13-2-254-264.
  • 17. Sang, N.P., Dung, T.N., Hung, T.K., Hien, T.T.P., Toan, T.T., Chinh, C.T.V., 2019. The degree of chemical weathering in the Ba River basin, South Central Vietnam: Major-element geochemistry investigations of morden river sediments and sedimentary rocks. Journal of Mining and Earth Sciences, 61(1): 82-91.
  • 18. Dung, N.B. 2017. Research on application of geomatics technology to improve the quality of space data for the investigation and planning of water resources. Ministry-level scientific research project.
  • 19. Jha, M.K., Chowdary, V.M., Chowdhury, A., 2010. Groundwater assessment in Salboni Block, West Bengal (India) using remote sensing, geographical information system, and multi-criteria decision analysis techniques. Hydrogeol. J., 18 (7):1713-1728.
  • 20. Yıldırım, Ü., 2021. Identification of Groundwater Potential Zones Using GIS and Multi-Criteria DecisionMaking Techniques: A Case Study Upper Coruh River Basin (NE Turkey). ISPRS Int. J. Geo-Inf, 10(396). https://doi.org/10.3390/ijgi10060396.
  • 21. Jabar, A., Wallis, L.A., Ruter, A., and Smith, W.P., 2012. Modified Delphi study to determine optimal data elements for inclusion in an emergency management database system, African Journal of Emergency Medicine, 2: 13-19.
  • 22. Grisham, T., 2009. The Delphi technique: A method for testing complex and multifaceted topics. International Journal of Managing Projects in Business, 2(1): 112-130. http://dx.doi.org/10.1108/17538370910930545.
  • 23. Steward, J., 2001. Is the Delphi technique a qualitative method? Medical Education, 35: 922-923. http://dx.doi.org/10.1111/j.1365-2923.2001.01045.x.
  • 24. Lee, G., Jun, K.S., Chung, E.S., 2013. Integrated multi-criteria flood vulnerability approach using fuzzy TOPSIS and Delphi technique. Natural Hazards and Earth System Sciences, 13: 1293-1312.
  • 25. Arof, A.M., 2015. The aplication of a combined Delphi-AHP method in matitime transport research – a review, Asian Social Science, 11(23): 73-82.
  • 26. Song, G., Yang, C.M., Hao, C., and Ran, Y.P., 2014. Weights of the value assessment indicators in integrated conservation of modern architectural heritage, Journal of Applied Sciences, 14: 580-85.
  • 27. Saaty, 1980. “The Analytic Hierachy Process”, McGrawHill, New York.
  • 28. Bertolini, M., Braglia, M. and Carmignani, G., 2006. Application of the AHP methodology in making a proposal for a public work contract, International Journal of Project Management, 24(5): 422-430.
  • 29. Miller, G.A., 1967. The magical number seven, plus-or-minus two, some limits to our capacity for processing information, Brain Physiology and Psychology.Buttenvorths: London: 175-200.
  • 30. Saaty, T.L., 2008. Decision making with the analytic hierarchy process, International journal of services sciences, 1: 83-98.
  • 31. Ishizaka, A., and Labib, A., 2011. Review of the main developments in the analytic hierarchy process, Expert systems with applications, 38.
  • 32. Chen, Y.R., Yeh, C.H., and Yu, B., 2011. Integrated application of the analytic hierarchy process and the geographic information system for flood risk assessment and flood plain management in Taiwan, Natural Hazards, 59: 1261-76.
  • 33. Dung, N.B., Long, N.Q., Ropesh, G., An, D.T., Minh, D.T., 2021. The Role of Factors Affecting Flood Hazard Zoning Using Analytical Hierarchy Process: A Review. Earth Systems and Environment. https://doi.org/10.1007/s41748-021-00235-4.
  • 34. Minh D.T. 2017. ‘Modeling methods and applications in generating flood risk zoning models’. Journal of Mining and Earth Sciences, 58(4): 128-136. (In Vietnamese).
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-2cdb6372-e90b-45e5-a647-81200103d7ed
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.