Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
In present work, two nuclear grade steel (P91, P92) are joined using the arc welding process. The welded joints were subjected to the heat treatment in order to restore the mechanical properties and overcome the heterogeneity across the joints. The weldments were studied for microstructure evolution and mechanical behavior under different condition of heat treatment. The variation in mechanical behavior obtained for the welded joints were tried to relate the microstructural evolution. After the normalizing based heat treatment, homogeneity with negligible δ ferrite across the welded joints was observed.
Słowa kluczowe
Wydawca
Czasopismo
Rocznik
Tom
Strony
583--593
Opis fizyczny
Bibliogr. 46 poz., fot., rys., tab.
Twórcy
autor
- Department of Mechanical Engineering, SRM IST Delhi NCR Campus Modinagar, Uttar Pradesh-201204, India
autor
- Department of Mechanical Engineering, IIT Jodhpur, Karwar-342037, India
autor
- Department of Mechanical Engineering, SRM IST Delhi NCR Campus Modinagar, Uttar Pradesh-201204, India
Bibliografia
- [1] S. A. David, J. A. Siefert, Z. Feng, Welding and weldability of candidate ferritic alloys for future advanced ultrasupercritical fossil power plants, Sci. Technol. Weld. Join. 18, 8, 631-51 (2013). 10.1179/1362171813Y.0000000152.
- [2] C. Pandey, M. M. Mahapatra, P. Kumar, N. Saini,, Effect of normalization and tempering on microstructure and mechanical properties of V-groove and narrow-groove P91 pipe weldments, Mater. Sci. Eng. A 685, 39-49 (2016). 10.1016/j.msea.2016.12.079.
- [3] R. L. Klueh, D. J. Alexander, E. A. Kenik, Development of low-chromium, chromium-tungsten steels for fusion, J. Nucl. Mater. 227, 11-23 (1995).
- [4] B. J. Mason, K. D. Challenger, Use of implant testing to evaluate the susceptibility of HY-150 steel weldments to hydrogen embrittlement, MS Thesis, Nav. Postgrad. Sch. Monterey, California, 28-9 (1981).
- [5] J. Bradley, Use of implant testing to evaluate the susceptibility of HY-130 steel weldments to hydrogen embrittlement (1981).
- [6] J. Tomków, G. Rogalski, D. Fydrych, J. Labanowski, Advantages of the application of the temper bead welding technique during wet welding, Materials (Basel). 16, 6 (2019). 10.3390/ma12060915.
- [7] D. Fydrych, A. Świerczyńska, G. Rogalski, J. Łabanowski, Temper Bead Welding of S420G2+M Steel in Water Environment, Adv. Mater. Sci. 16, 4, 5-16 (2017). 10.1515/adms-2016-0018.
- [8] A. S. Aloraier, R. N. Ibrahim, J. Ghojel, Eliminating post-weld heat treatment in repair welding by temper bead technique: Role bead sequence in metallurgical changes, J. Mater. Process. Technol. 153-154, 1-3, 392-400 (2004). 10.1016/j.jmatprotec.2004.04.383.
- [9] A. Świerczyńska, D. Fydrych, J. Łabanowski, The Effect of Welding Conditions on Diffusible Hydrogen Content in Deposited Metal, Solid State Phenom. 183, 193-200 (2012). 10.4028/www.scientific.net/ssp.183.193.
- [10] T. Schaupp, M. Rhode, T. Kannengiesser, Influence of welding parameters on diffusible hydrogen content in high-strength steel welds using modified spray arc process, Weld. World 62, 1, 9-18 (2018). 10.1007/s40194-017-0535-9.
- [11] C. Pandey, M. M. Mahapatra, P. Kumar, N. Saini, Effect of Weld Consumable Conditioning on the Diffusible Hydrogen and Subsequent Residual Stress and Flexural Strength of Multipass Welded P91 Steels, Metall. Mater. Trans. B Process Metall. Mater. Process. Sci. 49, 5, 2881-95 (2018). 10.1007/s11663-018-1314-8.
- [12] C. Pandey, M. M. Mahapatara, P. Kumar, N. Saini, Dissimilar joining of CSEF steels using autogenous tungsten-inert gas welding and gas tungsten arc welding and their effect on δ ferrite evolution and mechanical properties, J. Manuf. Process. 31, 247-59 (2018). 10.1016/j.jmapro.2017.11.020.
- [13] C. Pandey, M. M. Mahapatra, Effect of Groove Design and Post-Weld Heat Treatment on Microstructure and Mechanical Propertiesof P91 Steel Weld, J. Mater. Eng. Perform. 25, 7, 2761-75 (2016). 10.1007/s11665-016-2127-z.
- [14] C. Pandey, M. M. Mahapatra, P. Kumar, J. G. Thakare Saini, Role of evolving microstructure on the mechanical behaviour of P92 steel welded joint in as-welded and post weld heat treated state, J. Mater. Process. Technol. (2018). 10.1016/j.jmatprotec.2018.08.032.
- [15] K. Shinozaki, D. Li, H. Kuroki, H. Harada, K. Ohishi, T. Sato, Observation of type IV cracking in welded joints of high chromium ferritic heat resistant steels, Sci. Technol. Weld. Join. 8, 4, 289-95 (2003). 10.1179/136217103225005444.
- [16] W. Xue, Q. gang Pan, Y. Ren, W. Shang, H. Zeng, H. Liu, Microstructure and type IV cracking behavior of HAZ in P92 steel weldment, Mater. Sci. Eng. A 552, 493-501 (2012). 10.1016/j.msea.2012.05.076.
- [17] S. K. Albert, M. Matsui, T. Watanabe, H. Hongo, K. Kubo, M. Tabuchi, Microstructural investigations on type IV cracking in a high Cr steel, ISIJ Int. 42,12, (2002) 1497-504.
- [18] C. Pandey, M. M. Mahapatra, P. Kumar, N. Saini, Some studies on P91 steel and their weldments, J. Alloys Compd. 743, 332-64 (2018). https://doi.org/10.1016/j.jallcom.2018.01.120.
- [19] N. Saini, C. Pandey, M. M. Mahapatra, H. K. Narang, R. S. Mulik, P. Kumar, A comparative study of ductile-brittle transition behavior and fractography of P91 and P92 steel, Eng. Fail. Anal. 81, 245-53 (2017). 10.1016/j.engfailanal.2017.06.044.
- [20] N. Saini, C. Pandey, M. M. Mahapatra, Characterization and evaluation of mechanical properties of CSEF P92 steel for varying normalizing temperature, Mater. Sci. Eng. A 688, 250-61 (2017). 10.1016/j.msea.2017.02.022.
- [21] C. Pandey, M. M. Mahapatra, Effect of heat treatment on microstructure and hot Impact toughness of various zones of P91 welded pipes, J. Mater. Eng. Perform. 25, 6, 2195-210 (2016). 10.1007/s11665-016-2064-x.
- [22] N. Saini, C. Pandey, M. Mohan, Microstructure Evolution and Mechanical Properties of Dissimilar Welded Joint of P911 and P92 Steel for Subsequent PWHT and N&T Treatment, Trans. Indian Inst. Met. (2017). 10.1007/s12666-017-1145-3.
- [23] C. Pandey, M. M. Mahapatra, P. Kumar, A. Giri, Microstructure characterization and Charpy toughness of P91 weldment for as-Welded, post-weld heat treatment and normalizing & tempering heat treatment, Met. Mater. Int. 23, 5, 900-14 (2017). 10.1007/s12540-017-6850-2.
- [24] S. K. Albert, M. Matsui, T. Watanabe, H. Hongo, K. Kubo, M. Tabuchi, Variation in the type IV cracking behaviour of a high Cr steel weld with post weld heat treatment, Int. J. Press. Vessel. Pip. 80, 6, 405-13 (2003). 10.1016/S0308-0161(03)00072-3.
- [25] C. Pandey, M. Mohan Mahapatra, P. Kumar, N. Saini, Autogenous tungsten inert gas and gas tungsten arc with filler welding of dissimilar P91 and P92 steels, J. Press. Vessel Technol. 140, 2, 1-7 (2018). 10.1115/1.4039127.
- [26] C. Pandey, M. M. Mahapatra, P. Kumar, A comparative study of transverse shrinkage stresses and residual stresses in P91 welded pipe including plasticity error, Arch. Civ. Mech. Eng. 18, 3, 1000-11 (2018). 10.1016/j.acme.2018.02.007.
- [27] Vijaya L. Manugula, Koteswararao V. Rajulapati, G. Madhusudhan Reddy, K. Bhanu, Sankara Rao, Role of evolving microstructure on the mechanical properties of electron beam welded ferritic-martensitic steel in the as-welded and post weld heat-treated states, Mater. Sci. Eng. A 698, 36-45 (2017). 10.1016/j.msea.2017.05.036.
- [28] M. Abd El-Rahman Abd El-Salam, I. El-Mahallawi, M. R. El-Koussy, Influence of heat input and post-weld heat treatment onboiler steel P91 (9Cr-1Mo-V-Nb) weld joints: Part 2 - Mechanical properties, Int. Heat Treat. Surf. Eng. 7, 1, 32-7 (2013). 10.1179/1749514813Z.00000000051.
- [29] C. Pandey, M. M. Mahapatra, P. Kumar, F. Daniel, B. Adhithan, Softening mechanism of P91 steel weldments using heat treatments, Arch. Civ. Mech. Eng. 19, 2, 297-310 (2019). 10.1016/j.acme.2018.10.005.
- [30] C. Pandey, M. M. Mahapatra, P. Kumar, S. Kumar, Effect of post weld heat treatments on microstructure evolution and type IV cracking behavior of the P91 steel welds joint, J. Mater. Process. Technol. (2018). 10.1016/j.jmatprotec.2018.10.024.
- [31] C. Pandey, M. M. Mahapatra, P. Kumar, N. Saini, J. G. Thakre, R. S. Vidyarthy, H. K. Narang, A brief study on δ-ferrite evolution in dissimilar P91 and P92 steel weld joint and their effect on mechanical properties, Arch. Civ. Mech. Eng. 18,3, (2018). 10.1016/j.acme.2017.12.002.
- [32] C. Pandey, A. Giri, M. M. Mahapatra, Effect of normalizing temperature on microstructural stability and mechanical properties of creep strength enhanced ferritic P91 steel, Mater. Sci. Eng. A 657, 173-84 (2016). 10.1016/j.msea.2016.01.066.
- [33] M. Yoshino, Y. Mishima, Y. Toda, H. Kushima, K. Sawada, K. Kimura, Phase equilibrium between austenite and MX carbonitride in a 9Cr-1Mo-V-Nb steel, ISIJ Int. 45, 1, 107-15 (2005).
- [34] M. Taneike, K. Sawada, F. Abe, Effect of carbon concentration on precipitation behavior of M23C6 carbides and MX carbonitrides in martensitic 9Cr steel during heat treatment, Metall. Mater. Trans. A 35, 4, 1255-62 (2004). 10.1007/s11661-004-0299-x.
- [35] C. G. Panait, A. Zielinska-Lipiec, T. Koziel, A. Czyrska-Filemonowicz, A. F. Gourgues-Lorenzon, W. Bendick, Evolution of dislocation density, size of subgrains and MX-type precipitatesin a P91 steel during creep and during thermal ageing at 600°C for more than 100,000 h, Mater. Sci. Eng. A 527, 2010, 4062-9 (2010). 10.1016/j.msea.2010.03.010.
- [36] S. Sam, C. R. Das, V. Ramasubbu, S. K. Albert, A. K. Bhaduri,T. Jayakumar, E. Rajendra Kumar, Delta ferrite in the weld metal of reduced activation ferritic martensitic steel, J. Nucl. Mater. 455, 1-3, 343-8 (2014). 10.1016/j.jnucmat.2014.07.008.
- [37] C. Pandey, M. M. Mahapatra, P. Kumar, N. Saini, J. G. Thakre, R. S. Vidyarthy, H. K. Narang, A brief study on d-ferrite evolution indissimilar P91 and P92 steel joint and their effect on mechanical properties, Arch. Civ. Mech. Eng. 18, 3, 713-22 (2018). http://dx.doi.org/10.1016.
- [38] B. Arivazhagan, M. Vasudevan, A comparative study on the effect of GTAW processes on the microstructure and mechanical properties of P91 steel weld joints, J. Manuf. Process. 16, 2, 305-11 (2014). 10.1016/j.jmapro.2014.01.003.
- [39] B. Silwal, L. Li, A. Deceuster, B. Griffiths, Effect of postweld heat treatment on the toughness of heat-affected zone for Grade 91 steel, Weld. J. 92, 3, 80s-87s (2013).
- [40] Y. Wang, L. Zhang, Microstructural analysis of the as-welded heat-affected zone of a grade 91 steel heavy section weldment, Weld. J. 96, 203-19 (2017).
- [41] E. D. Specht, S. M. Allen, Formation of delta ferrite in 9 wt% Cr steel investigated by in-situ X-ray diffraction using synchrotron radiation, Metall. Mater. Trans. A 41, 2462-5 (2010). 10.1007/s11661-010-0371-7.
- [42] S. Kobayashi, K. Sawada, T. Hara, H. Kushima, K. Kimura, The formation and dissolution of residual δ ferrite in ASME Grade 91 steel plates, Mater. Sci. Eng. A 592, 241-8 (2014). 10.1016/j.msea.2013.10.058.
- [43] K. Kimura, K. Sawada, Y. Toda, H. Kushima, Creep Strength Assessment of High Chromium Ferritic Creep Resistant Steels, Mater. Sci. Forum 539-543, 3112-7 (2007). 10.4028/www.scien-tific.net/MSF.539-543.3112.
- [44] X. Y. Liu, T. Fujita, Effect of chromium on creep rupture properties of a high chromium ferritic heat resistant steel, ISIJ Int. 29, 8, 680-6 (1989).
- [45] K. Anderko, L. Sch, A. K. Ewaiom, Effect of the δ-ferrite phase on the impact properties chromium steels, J. Nucl. Mater. 179-181, 492-5 (1991).
- [46] L. Schafer, Influence of delta ferrite and dendritic carbides on the impact and tensile properties of a martensitic chromium steel, J. Nucl. Mater. 258-263, 1336-9 (1998).
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-2cdb42c4-a33d-4eed-9c79-7a75b1d2c212