Tytuł artykułu
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Języki publikacji
Abstrakty
The aim of this study was to investigate the impact of heterogeneity on the dose calculation for two algorithms implemented in the TPS “Analytical Anisotropic Algorithm (AAA) and Acuros XB” and validated the use of Acuros XB algorithm in clinical routine. First, we compare the dose calculated by these algorithms and the dose measured at the given point P, which is found after heterogeneity insert. Second, we extend our work on clinical cases that present a complex heterogeneity. By evaluating the impact of the choice of the algorithm on the dose coverage of the tumor, and the dose received by the organs at risk for 20 patients affected by lung cancer. The result of our phantom study showed a good agreement with several studies that showed the superiority of the Acuros XB over the AAA in predicting dose when it concerns heterogeneous media. The treatment plans for 20 lung cancers were calculated by two algorithms AAA and Acuros XB, the results show a statistical significant difference between algorithms for Homogeneity Index and the maximum dose of planning target volume (HI: 0.11±0.01 vs 0.05±0.01 p = 0.04; Dmax: 69.30±3.12 vs 68.51±2.64 p = 0.02). Instead, no statistically significant difference was observed for conformity index CI and mean dose (CI: 0.98±0.18 vs 0.99±0.14 p = 0.33; Dmean: 66.3±0.65 vs 66.10 ±0.61 p = 0.54). For organs at risk, the maximum dose for spinal cord, mean dose and D37 % of lung minus GTV (dose receiving 37% of lung volume) were found to be lower for AAA plans than Acuros XB and the differences were statistically significant (p<0.05). For the heart D33% and D67% were found to be higher for AAA plans than Acuros XB and the differences were statistically significant (p<0.05), but No difference was observed for D100% of the heart. The use of the AXB algorithm is suitable in the case of presence of heterogeneity, because it allows to have a better accuracy close to the Monte Carlo calculation.
Słowa kluczowe
Rocznik
Tom
Strony
115--119
Opis fizyczny
Bibliogr. 32 poz., rys., tab.
Twórcy
autor
- Nuclear reactor, nuclear security and environment group, Physics Department, Faculty of Sciences, Mohamed V University, Rabat, Morocco
- Sheikh Khalifa Ibn Zaid Hospital Department of Radiotherapy, Casablanca, Morocco
autor
- Nuclear reactor, nuclear security and environment group, Physics Department, Faculty of Sciences, Mohamed V University, Rabat, Morocco
autor
- Nuclear reactor, nuclear security and environment group, Physics Department, Faculty of Sciences, Mohamed V University, Rabat, Morocco
autor
- Nuclear reactor, nuclear security and environment group, Physics Department, Faculty of Sciences, Mohamed V University, Rabat, Morocco
autor
- Nuclear reactor, nuclear security and environment group, Physics Department, Faculty of Sciences, Mohamed V University, Rabat, Morocco
Bibliografia
- [1] Clarkson JR. A note on depth doses in fields of irregular shape. Br J Radiol. 1941;14(164):265-268.
- [2] Cunningham JR. Scatter-air ratios. Phys Med Biol.1972;17(1):42-51.
- [3] Khan FM, Levitt SH, Moore VC, Jones TK Jr. Computer and approximation methods of calculating depth dose in irregularly shaped fields. Radiology. 1973;106(2):433-436.
- [4] Sontag MR, Cunningham JR. The equivalent tissue-air ratio method for making absorbed dose calculations in a heterogeneous medium. Radiology. 1978;129(3):787-794.
- [5] Webb S, Fox RA. Verification by Monte Carlo methods of a power law tissue-air ratio algorithm for inhomogeneity corrections in photon beam dose calculations. Phys Med Biol. 1980;25(2):225-240.
- [6] Papanikolaou N, Battista J, Boyer A, et al. Tissue Inhomogeneity Corrections for Megavoltage Photon Beams. AAPM Report No. 85, AAPM TG65, 2004.
- [7] Mohan R, Chui C, Lidofsky L. Differential pencil beam dose computation model for photons. Med Phys. 1986;13(1):64-73.
- [8] Ahnesjö A. Collapsed cone convolution of radiant energy for photon dose calculation in heterogeneous media. Med Phys. 1989;16(4):577-592.
- [9] Ahnesjö A, Saxner M, Trepp A. A pencil beam model for photon dose calculation. Med Phys. 1992;19(2):263-273.
- [10] Bourland JD, Chaney EL. A finite-size pencil beam model for photon dose calculations in three dimensions. Med Phys. 1992;19(6):1401-1412.
- [11] Ahnesjö A, Aspradakis MM. Dose calculations for external photon beams in radiotherapy. Phys Med Biol. 1999;44(11):R99-155.
- [12] Knöös T, Wieslander E, Cozzi L, et al. Comparison of dose calculation algorithms for treatment planning in external photon beam therapy for clinical situations. Phys Med Biol. 2006;51(22):5785-5807.
- [13] Nakaguchi Y, Araki F, Maruyama M, Fukuda S. Comparison of RTPS and Monte Carlo dose distributions in heterogeneous phantoms for photon beams. Nihon Hoshasen Gijutsu Gakkai Zasshi. 2010;66(4):322-333.
- [14] Han T, Mikell JK, Salehpour M, Mourtada F. Dosimetric comparison of Acuros XB deterministic radiation transport method with Monte Carlo and model-based convolution methods in heterogeneous media. Med Phys. 2011;38(5):2651-2664.
- [15] Gagné IM, Zavgorodni S. Evaluation of the analytical anisotropic algorithm in an extreme water-lung interface phantom using Monte Carlo dose calculations. J Appl Clin Med Phys. 2007;8(1):33-46.
- [16] Sievinen J, Ulmer W, Kaissl W. AAA photon dose calculation model in Eclipse. RAD #7170B. Varian Medical Systems. 2005.
- [17] Ulmer W, Kaissl W. The inverse problem of a Gaussian convolution and its application to the finite size of the measurement chambers/detectors in photon and proton dosimetry. Phys Med Biol. 2003;48(6):707-727.
- [18] Ulmer W, Harder D. Applications of a Triple Gaussian Pencil Beam Model for Photon Beam Treatment Planning. Zeitschrift für Medizinische Physik. 1996;6(2):68-74.
- [19] Ulmer W, Harder D. A Triple Gaussian Pencil Beam Model for Photon Beam Treatment Planning. Zeitschrift für Medizinische Physik. 1995;5(1):25-30.
- [20] Vassiliev ON, Wareing TA, McGhee J, et al. Validation of a new grid-based Boltzmann equation solver for dose calculation in radiotherapy with photon beams. Phys Med Biol. 2010;55(3):581-598.
- [21] IAEA-TECDOC-1540: Specification and Acceptance Testing of Radiotherapy Treatment Planning Systems. IAEA. 2007.
- [22] Siebers JV, Keall PJ, Nahum AE, Mohan R. Converting absorbed dose to medium to absorbed dose to water for Monte Carlo based photon beam dose calculations. Phys Med Biol. 2000;45(4):983-995.
- [23] Bush K, Gagne IM, Zavgorodni S, et al. Dosimetric validation of Acuros XB with Monte Carlo methods for photon dose calculations. Med Phys. 2011;38(4):2208-2221.
- [24] Kan MW, Leung LH, So RW, Yu PK. Experimental verification of the Acuros XB and AAA dose calculation adjacent to heterogeneous media for IMRT and RapidArc of nasopharygeal carcinoma. Med Phys. 2013;40(3):031714.
- [25] Han T, Mourtada F, Kisling K, et al. Experimental Validation of Deterministic Acuros XB Algorithm for IMRT and VMAT Dose Calculations with the Radiological Physics Center's Head and Neck Phantom. Med Phys. 2012;39(4):2193-2202.
- [26] Fogliata A, Nicolini G, Clivio A, et al. Dosimetric evaluation of Acuros XB Advanced Dose Calculation algorithm in heterogeneous media. Radiat Oncol. 2011;6:82.
- [27] Fogliata A, Nicolini G, Clivio A, et al. Critical appraisal of Acuros XB and Anisotropic Analytic Algorithm dose calculation in advanced non-small-cell lung cancer treatments. Int J Radiat Oncol Biol Phys. 2012;83(5):1587-1595.
- [28] Kan MW, Leung LH, Yu PK. Dosimetric impact of using the Acuros XB algorithm for intensity modulated radiation therapy and RapidArc planning in nasopharyngeal carcinomas. Int J Radiat Oncol Biol Phys. 2013;85(1):e73-e80.
- [29] Fogliata A, Scorsetti M, Navarria P, et al. Dosimetric comparison between VMAT with different dose calculation algorithms and protons for soft-tissue sarcoma radiotherapy. Acta Oncol. 2013;52(3):545-552.
- [30] Rana S, Rogers K. Dosimetric evaluation of Acuros XB dose calculation algorithm with measurements in predicting doses beyond different air gap thickness for smaller and larger field sizes. J Med Phys. 2013;38(1):9-14.
- [31] Robinson D. Inhomogeneity correction and the analytic anisotropic algorithm. J Appl Clin Med Phys. 2008;9(2):2786.
- [32] Sterpin E, Tomsej M, De Smedt B, et al. Monte Carlo evaluation of the AAA treatment planning algorithm in a heterogeneous multilayer phantom and IMRT clinical treatments for an Elekta linear accelerator. Med Phys. 2007;34(5):1665-1677.
Identyfikator YADDA
bwmeta1.element.baztech-2cd8f51a-121a-486a-9bb2-e004ad48bc4e