PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Current possibilities for recycling industrial metallic wastes: potential of KOBO extrusion process

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Obecne możliwości recyklingu przemysłowych odpadów metalowych: możliwości procesu wyciskania KOBO
Języki publikacji
EN
Abstrakty
EN
The paper addresses the issue of utilizing industrial wastes considering the current legal regulations in Poland and the European Union. The importance of recycling was highlighted, with particular emphasis on metal elements whose natural deposits are limited. A comparison was made between primary methods of metal extraction and metal recovery (from secondary sources) using solid-state recycling methods without melting. An analysis of some methods for recycling industrial metallic wastes was conducted. Special attention was given to metal chips and the accompanying lubricating and cooling substances. An innovative recycling process was presented – the KOBO extrusion of metallic wastes in the form of chips, with example research results and a list of benefits from using this process for the production of metal profiles.
PL
Praca dotyczy problematyki wykorzystania odpadów w świetle obowiązujących regulacji prawnych w Polsce i Unii Europejskiej. Wskazano istotę recyklingu, ze zwróceniem szczególnej uwagi na pierwiastki metali, których złoża naturalne są ograniczone. Wskazano porównanie pierwotnych metod wydobycia metali oraz odzysk metali (pochodzących ze źródeł wtórnych) z wykorzystaniem metod recyklingu w stanie stałym oraz bez przetopu. Dokonano analizy niektórych sposobów recyklingu poprodukcyjnych odpadów metalowych. Szczególną uwagę zwrócono na metalowe wióra oraz towarzyszące im substancje smarno-chłodzące. Zaprezentowano innowacyjny proces recyklingowy – wyciskanie KOBO odpadów metalowych w postaci wiórów, przykładowe wyniki badań oraz wykaz korzyści płynących z wykorzystania tego procesu do produkcji kształtowników metalowych.
Rocznik
Strony
125--136
Opis fizyczny
Bibliogr. 50 poz., rys., tab., wykr.
Twórcy
  • Rzeszów University of Technology
  • Rzeszów University of Technology
  • Department of Materials Forming and Processing, Faculty of Mechanical Engineering and Aeronautics, Rzeszów University of Technology
autor
  • Rzeszów University of Technology
  • Department of Materials Forming and Processing, Faculty of Mechanical Engineering and Aeronautics, Rzeszów University of Technology
  • Rzeszów University of Technology
  • Doctoral School in Rzeszów University of Technology
Bibliografia
  • 1. Bochniak, W. (2009). Teoretyczne i praktyczne aspekty plastycznego kształtowania metali. Wydawnictwo AGH.
  • 2. Bochniak, W., Ostachowski, P., Korbel, A., & Łagoda, M. (2023). Potential of the KOBO extrusion process for nonferrous metals in the form of solids and chips. The International Journal of Advanced Manufacturing Technology, 127(1–2), 733–750. https://doi.org/10.1007/s00170-023-11596-7
  • 3. Born, K., & Ciftci, M. M. (2024). The limitations of end-of-life copper recycling and its implications for the circular economy of metals. Resources, Conservation and Recycling, 200, Article 107318. https://doi.org/10.1016/j.resconrec.2023.107318
  • 4. Chmura, W., & Gronostajski, J. (2000). Mechanical and tribological properties of aluminium-base composites produced by the recycling of chips. Journal of Materials Processing Technology, 106(1–3), 23–27. https://doi.org/10.1016/S0924-0136(00)00632-4
  • 5. Degórski, M. (2018). Gospodarka o obiegu zamkniętym circular economy – nowe podejście w rozumieniu relacji człowiek–środowisko. Studia Komitetu Przestrzennego Zagospodarowania Kraju PAN, 183, 27–35.
  • 6. Dhiman, S., Joshi, R. S., Singh, S., Gill, S. S., Singh, H., Kumar, R., & Kumar, V. (2021). A framework for effective and clean conversion of machining waste into metal powder feedstock for additive manufacturing. Cleaner Engineering and Technology, 4, Article 100151. https://doi.org/10.1016/j.clet.2021.100151
  • 7. Dion-Martin, O., Desmeules, J.F., & Dumont, R. (2021). Molten aluminium transfer: Review and comparison of different technologies. In L. Perander (Ed.), Light Metals 2021 (pp. 769–777). Springer International Publishing. https://doi.org/10.1007/978-3-030-65396-5_101
  • 8. Dubreuil, A., Young, S. B., Atherton, J., & Gloria, T. P. (2010). Metals recycling maps and allocation procedures in life cycle assessment. The International Journal of Life Cycle Assessment, 15(6), 621–634. https://doi.org/10.1007/s11367-010-0174-5
  • 9. Dybiec, H. (2007). Plastic consolidation of metallic powders. Archives of Metallurgy and Materials, 52(2), 161-170.
  • 10. Dybiec, H. (2008). Submikrostrukturalne stopy aluminium. AGH Uczelniane Wydawnictwa Naukowo-Dydaktyczne.
  • 11. Dybiec, H. (2010). Alternatywny proces recyklingu trudno przerabianych złomów z metali lekkich. Metalurgia’2010: Konferencja Sprawozdawcza Komitetu Metalurgii PAN, Krynica Zdrój. https://badap.agh.edu.pl/publikacja/66788
  • 12. Dybiec, H., & Kabalak, A. (2009). Ocena możliwości odzysku chłodziw z wiórów po obróbce skrawaniem stopów aluminiowych na drodze obróbki termicznej. Ochrona Powietrza i Problemy Odpadów, 43(4), 137-142.
  • 13. Ellen MacArthur Foundation. (2013). Towards the circular economy: Economic and business rationale for an accelerated transition (Vol. 1). https://www.ellenmacarthurfoundation.org/towards-the-circular-economy-vol-1-an-economic-and-business-rationale-for-an
  • 14. European Commission, Joint Research Centre. (2018). Towards recycling indicators based on EU flows and raw materials system analysis data: Supporting the EU 28 raw materials and circular economy policies through RMIS. Luxembourg: Publications Office of the European Union. https://data.europa.eu/doi/10.2760/092885
  • 15. European Commission. (2020a). A new circular economy action plan. https://environment.ec.europa.eu/strategy/circular-economy-action-plan_en
  • 16. European Commission. (2020b). A new industrial strategy for Europe. https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:52020DC0102
  • 17. European Commission. (2021, July 15). Zero pollution action plan - 2050: A healthy planet for all. https://environment.ec.europa.eu/publications/zero-pollution-action-plan-2050-healthy-planet-all_en
  • 18. European Commission. (2024). Industrial emissions and safety. https://environment.ec.europa.eu/topics/industrial-emissions-and-safety_en
  • 19. European Parliament and the Council of the European Union. (2008). Directive 2008/98/EC on waste and repealing certain directives (Text with EEA relevance), OJ L 312. http://data.europa.eu/eli/dir/2008/98/oj/eng
  • 20. European Parliament. (2018). Greenhouse gas emissions by country and sector (infographic). https://www.europarl.europa.eu/topics/en/article/20180301STO98928/greenhouse-gas-emissions-by-country-and-sector-infographic
  • 21. European Parliament. (2023). Circular economy: Definition, importance, and benefits. https://www.europarl.europa.eu/topics/en/article/20151201STO05603/circular-economy-definition-importance-and-benefits
  • 22. Feld, M. (1984). Obróbka skrawaniem stopów aluminium. Wydawnictwa Naukowo-Techniczne.
  • 23. Fetting, C. (2020). The European Green Deal. European Sustainable Development Network. https://www.esdn.eu/fileadmin/ESDN_Reports/ESDN_Report_2_2020.pdf
  • 24. Grabas, M. (2015). Waste management. Oficyna Wydawnicza Politechniki Rzeszowskiej.
  • 25. Gronostajski, J., Marciniak, H., & Matuszak, A. (2000). New methods of aluminium and aluminium-alloy chips recycling. Journal of Materials Processing Technology, 106(1–3), 34–39. https://doi.org/10.1016/S0924-0136(00)00634-8
  • 26. Kłonica, M., Kuczmaszewski, J., Zaleski, K., Matuszak, J., Pieśko, P., Włodarczyk, M., Pałka, T., Rusinek, R., & Zagórski, I. (2015). Obróbka skrawaniem stopów aluminium i magnezu. Politechnika Lubelska.
  • 27. Korbel, A., Bochniak, W., Śliwa, R., Ostachowski, P., Łagoda, M., Kusion, Z., & Trzebuniak, B. (2016). Low-temperature consolidation of machining chips from hardly-deformable aluminum alloys. Obróbka Plastyczna Metali, 27(2), 133-152.
  • 28. Korbel, A., & Bochniak, W. (1998). Method of plastic forming of materials. U.S. Patent No. 5,737,959. European Patent No. 737,959.
  • 29. Krall, P., Weißensteiner, I., & Pogatscher, S. (2024). Recycling aluminum alloys for the automotive industry: Breaking the source-sink paradigm. Resources, Conservation and Recycling, 202, Article 107370. https://doi.org/10.1016/j.resconrec.2023.107370
  • 30. Kwiecień, K. (2018). Gospodarka o obiegu zamkniętym – wyzwania dla przedsiębiorstw. Gospodarka w Praktyce i Teorii, 52(3), 47–59. https://doi.org/10.18778/1429-3730.52.04
  • 31. Lee, C. M., Choi, Y. H., Ha, J. H., & Woo, W.-S. (2017). Eco-friendly technology for recycling of cutting fluids and metal chips: A review. International Journal of Precision Engineering and Manufacturing-Green Technology, 4(4), 457–468. https://doi.org/10.1007/s40684-017-0051-9
  • 32. Li, F. Q., Wang, P., Chen, W., Chen, W. Q., Wen, B., & Dai, T. (2022). Exploring recycling potential of rare, scarce, and scattered metals: Present status and future directions. Sustainable Production and Consumption, 30, 988–1000. https://doi.org/10.1016/j.spc.2022.01.018
  • 33. Maloney, M. M., Grimm, S. D., & Anctil, R. (2020). Atlas international business case: Examining globalization and economic indicators for the scrap metal recycling industry. Journal of Accounting Education, 51, Article 100661. https://doi.org/10.1016/j.jaccedu.2020.100661
  • 34. McKinsey & Company. (2016). The circular economy: Moving from theory to practice. McKinsey Center for Business and Environment.
  • 35. Nowicka, K. (2020). Zielone łańcuchy dostaw 4.0. In J. Gajewski & W. Paprocki (Eds.), Polityka klimatyczna i jej realizacja w pierwszej połowie XXI wieku (pp. 114-135). Sopot: Centrum Myśli Strategicznych.
  • 36. Oczoś, K. E. (2009). Rozszerzanie granic stosowalności stopów magnezu. Mechanik, 82(5–6), 388-400.
  • 37. Park, H., Nam, K., & Lee, J. (2022). Lessons from aluminum and magnesium scraps fires and explosions: Case studies of metal recycling industry. Journal of Loss Prevention in the Process Industries, 80, Article 104872. https://doi.org/10.1016/j.jlp.2022.104872
  • 38. Pawłowska, B., & Śliwa, R. E. (2017). Recykling wiórów aluminium metodą KOBO. Obróbka Plastyczna Metali, 28(4), 301–316.
  • 39. Pawłowska, B., Śliwa, R. E., & Zwolak, M. (2019). Possibilities to obtain products from 2024 and 7075 chips in the process of consolidation by KoBo extrusion. Archives of Metallurgy and Materials, 1213–1221. https://doi.org/10.24425/amm.2019.130083
  • 40. Pietrzyk-Sokulska, E. (2016). Recykling jako potencjalne źródło pozyskiwania surowców mineralnych z wybranych grup odpadów. Zeszyty Naukowe Instytutu Gospodarki Surowcami Mineralnymi i Energią PAN, 92, 141-162.
  • 41. Rietdorf, C., Ziehn, S., Giunta, S. M., Miehe, R., & Sauer, A. (2024). Environmental assessment of metal chip recycling – Quantification of mechanical processing’s global warming potential. Procedia CIRP, 122,
  • 42. –246. https://doi.org/10.1016/j.procir.2024.02.009
  • 43. Shamsudin, S., Lajis, M., & Zhong, Z. W. (2016). Evolutionary in solid state recycling techniques of aluminium: A review. Procedia CIRP, 40, 256–261. https://doi.org/10.1016/j.procir.2016.01.117
  • 44. Topolski, K., & Ostachowski, P. (2021). Solid state processing of titanium chips by an unconventional plastic working. Journal of Materials Research and Technology, 13, 808–822. https://doi.org/10.1016/j.jmrt.2021.04.037
  • 45. Topolski, K., Bochniak, W., Łagoda, M., Ostachowski, P., & Garbacz, H. (2017). Structure and properties of titanium produced by a new method of chip recycling. Journal of Materials Processing Technology, 248, 80–91. https://doi.org/10.1016/j.jmatprotec.2017.05.005
  • 46. Topolski, K., Jaroszewicz, J., & Garbacz, H. (2021). Structural aspects and characterization of structure in the processing of titanium Grade 4 different chips. Metals, 11(1), 101. https://doi.org/10.3390/met11010101
  • 47. Tucholski, G. (2013). Chips versus briquettes: How the aluminium industry can effectively and efficiently recycle scrap. International Aluminium Journal, 89(1/2), 87-88.
  • 48. Watanabe, H., Moriwaki, K., Mukai, T., Ishikawa, K., Kohzu, M., & Higashi, K. (2001). Consolidation of machined magnesium alloy chips by hot extrusion utilizing superplastic flow. Journal of Materials Science, 36, 5007–5011. https://doi.org/10.1023/A:1017937205871
  • 49. Xu, H., Ji, Z., Hu, M., & Wang, Z. (2012). Microstructure evolution of hot pressed AZ91D alloy chips reheated to semi-solid state. Transactions of Nonferrous Metals Society of China, 22(12), 2906–2912. https://doi.org/10.1016/S1003-6326(11)61549-5
  • 50. Zante, G., Elgar, C. E., Hartley, J. M., Mukherjee, R., Kettle, J., Horsfall, L., Walton, A., Harper, G. J., & Abbott, A. P. (2024). A toolbox for improved recycling of critical metals and materials in low-carbon technologies. RSC Sustainability, 2(2), 320-347. https://doi.org/10.1039/d3su00390f
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-2cd79fd5-7657-40ba-b96d-72b96cbe96a7
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.