PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Quality evaluation of commercial products of Ganoderma lucidum made from its fruiting body and spore

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Ganoderma lucidum (GL), also known as Reishi or Lingzhi, is a medicinal mushroom widely used in traditional and folk medicines. The extracts made from the fruiting body and spore of naturally grown GL are the most frequently used in commercial products. More than 400 compounds have been identified in GL with the triterpenoids considered to be the major active components. Large variations in the chemical components were reported in previous studies and there is no comprehensive study of the content of multiple major triterpenoids in the GL product. In addition, there is no report in the comparison of chemical profiles in different parts of GL (i.e., fruiting body and spore). Determining the chemical composition and comparing the differences between fruiting body and spore are essential for the identity, efficacy and safety of various GL products. In this study, 13 compounds (ganoderenic Acid C, ganoderic Acid C2, ganoderic Acid G, ganoderic Acid B, ganoderenic Acid B, ganoderic Acid A, ganoderic Acid H, ganoderenic Acid D, ganoderic Acid D, ganoderic Acid F, ganoderic Acid DM, ganoderol A, and ergosterol) were selected as the chemical markers. The purpose of this study is to develop an HPLC-DAD fingerprint method for quantification of these active components in GL (spore and fruiting body) and test the feasibility of using the HPLC-DAD fingerprint for quality control or identity determination of GL products. The results showed that this method could determine the levels of the major components accurately and precisely. Among the 13 components, 11 ganoderma acids were identified to be proper chemical markers for quality control of GL products, while ganoderal A was in a very low amount and ergosterol was not a specific marker in GL. The extracts of fruiting body contained more chemical compounds than those of spore, indicating that these 11 compounds could be a better chemical marker for the fruiting body than the spore. The HPLC chemical fingerprint analysis showed higher variability in the quality of GL harvest in different years, while lesser variation in batches harvested in the same year. In conclusion, an HPLC assay detecting 11 major active components and a fingerprinting method was successfully established and validated to be feasible for quality control of most commercial GL products.
Rocznik
Strony
100--113
Opis fizyczny
Bibliogr. 20 poz., rys., tab.
Twórcy
autor
  • Department of Pharmaceutical Sciences, College of Pharmacy, Western University of Health Sciences, Pomona, CA 91766, USA
autor
  • Beijing Tong Ren Tang Chinese Medicine Co., Ltd, Hong Kong, China
autor
  • Beijing Tong Ren Tang Chinese Medicine Co., Ltd, Hong Kong, China
autor
  • Beijing Tong Ren Tang Chinese Medicine Co., Ltd, Hong Kong, China
autor
  • Beijing Tong Ren Tang Chinese Medicine Co., Ltd, Hong Kong, China
autor
  • Beijing Tong Ren Tang Chinese Medicine Co., Ltd, Hong Kong, China
autor
  • Department of Pharmaceutical Sciences, College of Pharmacy, Western University of Health Sciences, Pomona, CA 91766, USA
autor
  • Department of Pharmaceutical Sciences, College of Pharmacy, Western University of Health Sciences, Pomona, CA 91766, USA
  • Department of Pharmaceutical Sciences, College of Pharmacy, Marshall B. Ketchum University, Fullerton, CA 92831, USA
Bibliografia
  • 1. Zhou, L. W. ; Cao, Y. ; Wu, S.-H. ; Vlasák, J. ; Li, D.-W. ; Li, M.-J. ; Dai, Y.-C. Global diversity of the Ganoderma lucidum complex (Ganodermataceae, Polyporales) inferred from morphology and multilocus phylogeny. Phytochemistry 2015, 114, 7–15. https://doi.org/10.1016/j.phytochem.2014.09.023.
  • 2. Lindequist, U. ; Jülich, W.-D. ; Witt, S. Ganoderma pfeifferi – a European relative of Ganoderma lucidum. Phytochemistry 2015, 114,102-108. https://doi.org/10.1016/j.phytochem.2015.02.018.
  • 3. Cizmarikova, M. The efficacy and toxicity of using the lingzhi or Reishi medicinal mushroom, Ganoderma lucidum (agaricomycetes), and its products in chemotherapy (review). Int. J. Med. Mushrooms 2017, 19(10), 861–77. https://doi.org/10.1615/IntJMedMushrooms.2017024537.
  • 4. Guggenheim, A. G.; Wright, K. M.; Zwickey, H. L. Immune modulation from five major mushrooms: application to integrative oncology. Integr. Med. (Encinitas, Calif.) 2014, 13(1), 32–44.
  • 5. Paterson, R. R. M. Ganoderma – a therapeutic fungal biofactory. Phytochemistry 2006, 67(18), 1985–2001. https://doi.org/10.1016/j.phytochem.2006.07.004.
  • 6. Soccol, C. R.; Bissoqui, L. Y.; Rodrigues, C.; Rubel, R.; Sella, S. R.; Leifa, F.; de Souza Vandenberghe, L. P.; Soccol, V. T. Pharmacological properties of biocompounds from spores of the lingzhi or Reishi medicinal mushroom ganoderma lucidum (agaricomycetes): a review. Int. J. Med. Mushrooms 2016, 18(9), 757–67. https://doi.org/10.1615/IntJMedMushrooms.v18.i9.10.
  • 7. Cheng, S.; Sliva, D. Ganoderma lucidum for cancer treatment: we are close but still not there. Integr. Cancer Ther. 2015, 14(3), 249–57. https://doi.org/10.1177/1534735414568721.
  • 8. Liang, C.; Tian, D.; Liu, Y.; Li, H.; Zhu, J.; Li, M.; Xin, M.; Xia, J. Review of the molecular mechanisms of Ganoderma lucidum triterpenoids: ganoderic acids A, C2, D, F, DM, X and Y. Eur. J. Med. Chem. 2019, 174, 130–41. https://doi.org/10.1016/j.ejmech.2019.04.039.
  • 9. Necyk, C.; Zubach-Cassano, L. Natural health products and diabetes: a practical review. Can. J. Diabetes 2017, 41(6), 642–7. https://doi.org/10.1016/j.jcjd.2017.06.014.
  • 10. Liu, W.; Zhang, J.; Han, W.; Liu, Y.; Feng, J.; Tang, C.; Feng, N.; Tang, Q. One single standard substance for the simultaneous determination of 17 triterpenes in Ganoderma lingzhi and its related species using high-performance liquid chromatography. J. Chromatogr. B 2017, 1068–1069, 49–55. https://doi.org/10.1016/j.jchromb.2017.10.010.
  • 11. Yan, Z.; Xia, B.; Qiu, M. H.; Li Sheng, D.; Xu, H. X. Fast analysis of triterpenoids in Ganoderma lucidum spores by ultra-performance liquid chromatography coupled with triple quadrupole mass spectrometry. Biomed. Chromatogr. : BMC 2013, 27(11), 1560–7. https://doi.org/10.1002/bmc.2960.
  • 12. Zhao, J.; Zhang, X. Q.; Li, S. P.; Yang, F. Q.; Wang, Y. T.; Ye, W. C. Quality evaluation of Ganoderma through simultaneous determination of nine triterpenes and sterols using pressurized liquid extraction and high performance liquid chromatography. J. Sep. Sci. 2006, 29(17), 2609–15. https://doi.org/10.1002/jssc.200600178.
  • 13. Liu, Y.; Liu, Y.; Qiu, F.; Di, X. Sensitive and selective liquid chromatography–tandem mass spectrometry method for the determination of five ganoderic acids in Ganoderma lucidum and its related species. J. Pharm. Biomed. Anal. 2011, 54(4), 717–21.https://doi.org/10.1016/j.jpba.2010.11.002.
  • 14. Zhang, H.; Jiang, H.; Zhang, X.; Tong, S.; Yan, J. Development of global chemical profiling for quality assessment of ganoderma species by ChemPattern software. J. Anal. Methods Chem. 2018, 1675721. https://doi.org/10.1155/2018/1675721.
  • 15. Di, X.; Chan, K. K. C.; Leung, H. W.; Huie, C. W. Fingerprint profiling of acid hydrolyzates of polysaccharides extracted from the fruiting bodies and spores of Lingzhi by high-performance thinlayer chromatography. J. Chromatogr. 2003, 1018(1), 85–95. https://doi.org/10.1016/j.chroma.2003.07.015.
  • 16. Gao, J.; Sato, N.; Hattori, M.; Ma, C.-M. The simultaneous quantification of Ganoderma acids and alcohols using ultra high-performance liquid chromatography–mass spectrometry in dynamic selected reaction monitoring mode. J. Pharm. Biomed. Anal. 2013, 74, 246–9. https://doi.org/10.1016/j.jpba.2012.11.003.
  • 17. Wu, L.; Liang, W.; Chen, W.; Li, S.; Cui, Y.; Qi, Q.; Zhang, L. Screening and analysis of the marker components in ganoderma lucidum by HPLC and HPLC-MS(n) with the aid of chemometrics. Molecules 2017, 22(4), 584. https://doi.org/10.3390/molecules22040584.
  • 18. Ahmad, M. F. Ganoderma lucidum: persuasive biologically active constituents and their health endorsement. Biomed. Pharmacother. 2018, 107, 507–19. https://doi.org/10.1016/j.biopha.2018.08.036.
  • 19. Hu, G.; Zhai, M.; Niu, R.; Xu, X.; Liu, Q.; Jia, J. Optimization of culture condition for ganoderic acid production in ganoderma lucidum liquid static culture and design of a suitable bioreactor. Molecules 2018, 23(10), 2563. https://doi.org/10.3390/molecules23102563.
  • 20. Weete, J. D.; Abril, M.; Blackwell, M. Phylogenetic distribution of fungal sterols. PLoS One 2010, 5(5), e10899. https://doi.org/10.1371/journal.pone.0010899.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-2cd3d609-296a-4f2b-acff-6a37092cf3c2
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.