PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Removal of copper, nickel and tin from model and real industrial wastewater using sodium trithiocarbonate : the negative impact of complexing compounds

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Usuwania miedzi, niklu i cyny z syntetycznych i rzeczywistych ścieków przemysłowych przy zastosowaniu tritiowęglanu sodu : negatywny wpływ związków kompleksujących
Języki publikacji
EN
Abstrakty
EN
The possibility of Cu(II), Ni(II) and Sn(II) removal from model solutions and real wastewater from the production of PCBs using Na2CS3 for precipitation was presented in this paper. The testing was carried out on a laboratory scale using model and real industrial wastewater containing additives in the form of complexing compounds used in the production of PCBs (Na2EDTA, NH3(aq), thiourea) and recommended by the USEPA (Na3MGDA, Na4GLDA). Application of Na2CS3 in optimal conditions of conducting precipitation process was connected with obtaining wastewater containing low concentrations of metals (Cu 0.02 mg/L, Sn <0.01 mg/L, Ni <0.005 mg/L at pH 9.39 and Cu 0.07 mg/L, Sn <0.01 mg/L, Ni 0.006 mg/L at pH 7.79). Controlled application of Na2CS3 by the use of a platinum redox electrode was also connected with obtaining treated wastewater containing low concentrations of metals (Cu 0.019 mg/L, Sn <0.05 mg/L, Ni <0.0098 mg/L at pH 9–9.5 and E= -142 mV in the laboratory scale and Cu 0.058 mg/L, Sn <0.005 mg/L, Ni 0.011 mg/L at pH 9.14 and E= +10 mV in the industrial scale). Changing the value of redox potential of treated wastewater by dosing Na2CS3 made it possible to control the precipitation process on laboratory and industrial scale by the use of a platinum redox electrode. Controlled application of Na2CS3 can be used to remove Cu(II), Ni(II) and Sn(II) from industrial effluent containing chelating compounds like Na2EDTA, NH3(aq), thiourea, Na3MGDA and Na4GLDA.
PL
Przedstawiono możliwość usuwania jonów Cu(II), Ni(II) oraz Sn(II) z roztworów modelowych oraz ścieków rzeczywistych pochodzących z produkcji PCB przy zastosowaniu do strącania roztworu Na2CS3. Badania prowadzono w skali laboratoryjnej z zastosowaniem roztworów modelowych zwierających dodatki związków kompleksujących stosowanych w produkcji PCB (Na2EDTA, NH3(aq), tiomocznik) oraz rekomendowanych przez USEPA (Na3MGDA, Na4GLDA). Zastosowanie Na2CS3 w optymalnych warunkach prowadzenia procesu strącania, związane było z otrzymaniem ścieków zawierających niskie stężenia metali. Zmiana wartości potencjału redoks oczyszczanych ścieków wskutek dozowania Na2CS3 umożliwiła kontrolowanie procesu strącania w skali przemysłowej przez zastosowanie platynowej elektrody redoks.
Rocznik
Strony
33--47
Opis fizyczny
Bibliogr. 36 poz., rys., tab., wykr.
Twórcy
autor
  • Central Mining Institute, Poland
autor
  • Central Mining Institute, Poland
autor
  • Central Mining Institute, Poland
Bibliografia
  • 1. Ali, S.M., Khalid, A.R. & Majid, R.M. (2014). The removal of zinc, chromium and nickel from industrial waste water using corn cobs, Iraqi Journal of Science, vol. 55, 1, pp. 123–131.
  • 2. Aziz, H.A., Othman, N., Yusuff, M.S., Basri, D.R.H., Ashaari, F.A.H., Adlan, M.N., Othman, F., Johari, M. & Perwira, M. (2001). Removal of copper from water using limestone filtration technique. Determination of mechanism of removal, Medium International, 26, pp. 395–399.
  • 3. Bartkiewicz, B. & Umiejewska, K. (2010). Treatment of industrial wastewater, Państwowe Wydawnictwo Naukowe, Warszawa 2010. (in Polish)
  • 4. BLFW (2005). Use of organosulfi des for wastewater treatment, Instructions Nr 4.5/13, Bayerisches Landesamt für Wasserwirtschaft, pp. 1–10. (in German)
  • 5. Bobrowska-Krajewska, K., Dąbek, M., Kmieć, B. & Krajewski, J. (1994). Selected issues of the synthesis and use of sodium trithiocarbonate, Chemik, 6, pp. 155–158. (in Polish)
  • 6. Bobrowska-Krajewska, K., Dąbek, M., Kmieć, B. & Krajewski, J. (1994). The possibility of removing trace amounts of heavy metals from wastewater, Archiwum Ochrony Środowiska, 3–4, pp. 73–87. (in Polish)
  • 7. Budilovskis, J. (1998). Process for the purification of production wastewater using controls the sludge properties, Wasser, Luft und Boden, 6, p. 41. (in German)
  • 8. Budilovskis, D. & Eshchenko, L.S. (2004). Mechanism and products of thermal treatment of slimes obtained at treatment of wastewaters using ferroferrihydrosol, Russian Journal of Applied Chemistry, 77, 9, pp. 1510–1514.
  • 9. Chang, Y.K., Leu, M.H., Chang, J.E., Lin, T.F., Chiang, L.C. Shih, P.H. & Chen, T.C., (2007). Combined two-stage xanthate processes for the treatment of copper-containing wastewater, Engineering in Life Sciences, 7, 1, pp. 75–80.
  • 10. Chang, Y.K., Chang, J.E., Lin, T.T. & Hsu, Y.M. (2002). Integrated copper-containing wastewater treatment using xanthate process, Journal of Hazardous Materials, 94, 1, pp. 89–99.
  • 11. C.H. Erbsloeh GmbH (2007). Technical Data Sheet, Plexon 2210, 11.04.2007, pp. 1–2. (in Polish)
  • 12. Chen, T.-Ch., Priambodo, R., Huang, R.-L. & Huang, Y.-H. (2013). The effective electrolytic recovery of dilute copper from industrial wastewater, Journal of Waste Management, pp. 1–6.
  • 13. Cywiński, B., Gdula, S., Kempa, E., Kurbiel, J. & Płoszański, H. (1983), Wastewater treatment. Mechanical and chemical treatment, Arkady, Warszawa 1983. (in Polish)
  • 14. Das, K.K. & Buchner, V. (2007). Effect of nickel exposure on peripheral tissues. Role of oxidative stress in toxicity and possible protection by ascorbic acid, Reviews of Medical Health, 22, pp. 133–149.
  • 15. Dermentzis, K., Christoforidis, A. & Valsamidou, E. (2011). Removal of nickel, copper, zinc and chromium from synthetic and industrial wastewater by electrocoagulation, International Journal of Mediumal Sciences, 1, 5, pp. 697–710.
  • 16. Dutta, M. & Basu, J.K. (2014). Removal of Cu2+ from electroplating industrial wastewater by using microwave assisted activated carbon, International Journal of Recent Development in Engineering and Technology, vol. 2, 5, pp. 28–31.
  • 17. Electroplater handbook (2002). Praca zbiorowa, Wydawnictwo Naukowo-Techniczne, Warszawa, 2002. (in Polish)
  • 18. Evonik Industries GmbH, (2012) Technical Data Sheet, TMT15, 23.01.2012, pp. 1–2. (in Polish)
  • 19. Fu, F., Zeng, H., Cai, Q., Qiu, R., Yu, J. & Xiong, Y. (2007). Effective removal of coordinated copper from wastewater using a new dithiocarbamate-type supramolecular heavy metal precipitant, Chemosphere, 69, 11, pp. 1783–1789.
  • 20. Hartinger, L. (1991). Handbook of wastewater and recycling technology for the metalworking industry, Muenchen, Wien, Carl Hanser Verlag, 1991. (in German)
  • 21. IARC, International Agency for Research on Cancer, (1990). IARC Monograph on the evaluation of carcinogenic risks to humans, Lyans, France, vol. 49, pp. 318–411.
  • 22. Kang, C.D., Sim, S.J., Cho, Y.S. & Kim, W.S. (2003). Process development for the removal of copper from wastewater using ferric/limestone treatment, Korean Journal of Chemical Engineering, 20, 3, pp. 482–486.
  • 23. Keranen, A., Leiviska, T., Salakka, A. & Tanskanen, J. (2015). Removal of nickel and vanadium from ammoniacal industrial wastewater by ion exchange and adsorption on activated carbon, Desalination and Water Treatment, 53, 10, pp. 2645–2654.
  • 24. Kieszkowski, M. (1992). Wastewater treatment and recovery of raw materials in the surface treatment of metals, Wydawnictwo Instytutu Mechaniki Precyzyjnej, Warszawa, 1992. (in Polish)
  • 25. Lekhlif, B., Oudrhiri, L., Zidane, F., Drogui, P. & Blais, J.F. (2014). Study of the electrocoagulation of electroplating industry wastewaters charged by nickel(II) and chromium(VI), Journal of Materials and Mediumal Science, 5(1), pp. 111–120.
  • 26. Li, Y., Zeng, X., Liu, Y., Yan, S., Hu, Z. & Ni, Y., (2003). Study on the treatment of copper-electroplating wastewater by chemical trapping and flocculation, Separation and Purification Technology, 31, pp. 91–95.
  • 27. Seńczuk, W. (2012). Contemporary toxicology, Państwowy Zakład Wydawnictw Lekarskich, Warszawa, 2012. (in Polish)
  • 28. Shan, Q., Zhang, Y. & Xue, X. (2013), Removal of copper from wastewater by using the synthetic nesquehonite, Mediumal Progress & Sustainable Energy, 3, pp. 543–546.
  • 29. Sivaprakash, K., Blessi, A. & Madhavan, J. (2015). Biosorption of nickel from industrial wastewater using Zygnema sp., Journal of The Institution of Engineers (India), Series A, 96, 4, pp. 319–326.
  • 30. Stefanowicz, T. (2001). Wastewater and waste management in the electrochemical industry, Wydawnictwo Politechniki Poznańskiej, Poznań 2001. (in Polish)
  • 31. Stechman, M. & Orłowska, M. (2010). Evaluation of the usefulness of sodium trithiocarbonate for the treatment of wastewater and waste solutions containing of heavy metals compared with trisodium 2,4,6-trimercaptotriazine, Institute of Inorganic Chemistry in Gliwice, unpublished. (in Polish)
  • 32. Thomas, M., Białecka, B. & Zdebik, D. (2014), Sources of copper ions and selected methods of their removal from wastewater from the printed circuits board production, Inżynieria Ekologiczna, vol. 37, pp. 31–49. (in Polish)
  • 33. Torabian, A., Hasani, A.H. & Saraei, L.O. (2005). The study of wastewater treatment methods in tin and galvanized plating industries, Journal of Mediumal Science and Technology, 26, pp. 1–10.
  • 34. USEPA (1980). Sources and Treatment of Wastewater in the Nonferrous Metals Industry, USEPA Industrial Mediumal Research Laboratory, Cincinnati, pp. 1–173.
  • 35. USEPA (1981). Treatability Manual, Technologies for Control/Removal of Pollutants, Office of Research and Development USEPA, Washington, 3, pp. 1–677.
  • 36. USEPA (2016). (https://www.epa.gov/saferchoice/safer-ingredients#searchList(30.12.2016))
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-2cd0f6fa-6a11-40d8-8f19-c7b444c214fb
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.