Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
This study used advanced hydrological models, such as AGWA2 with SWAT and KINEROS2 extensions, to assess the water basins that lack observed field measurements. This approach provides a practical understanding of data systems for ungauged watersheds. Consequently, the research aimed to evaluate and identify suitable sites for subsurface dams in the Al Kur basin in northern Iraq. Additionally, this will contribute to the development of these areas, creating opportunities for the return of residents and sustainable organization of population and agricultural activities after two decades of unstable conditions as a result of conflicts and military operations where local governments are actively working towards achieving this goal. The analytical hierarchy process (AHP) identified Basin No. 20 as the most suitable location based on multiple decision criteria, including evapotranspiration, percolations, water yield, transmission losses, and sediment yield, which were obtained by applying the SWAT model for the study watershed. The evaluated SWAT model results indicate that Basin No. 20 received the highest rating based on these criteria. Using the KINEROS2 model, the response Basin No. 20 to individual rainstorm events was analyzed. Its ability to utilize runoff for groundwater recharging with minimal sediment load was confirmed, with only 0.286% of sediment load volume from the total outflow volume. This makes it a promising site for constructing a subsurface dam and contributes to improving water resource management in the region.
Wydawca
Rocznik
Tom
Strony
363--378
Opis fizyczny
Bibliogr. 51 poz., rys., tab.
Twórcy
autor
- Civil Engineering Department, University of Babylon, Babylon, Iraq
autor
- Civil Engineering Department, University of Babylon, Babylon, Iraq
autor
- Civil Engineering Department, University of Babylon, Babylon, Iraq
Bibliografia
- 1. Al-Ansari, N., Adamo, N. and Sissakian, V.K. (2018). Groundwater Quality and Their Uses in Iraq. Available at: https://www.researchgate.net/ publication/324681023
- 2. Alfatlawi, T.J.M., & Hussein, A.H. (2024a). A numerical study of diversion flow to determine the optimum flow system in open channels. Water Practice & Technology, 19(4), 1330–1347. https://doi.org/10.2166/wpt.2024.056
- 3. Alfatlawi, T. J. M., & Hussein, A. H. (2024b). Probing the complexities of optimal flow in open channels: experimental and numerical validation with diversion flow. Journal of Hydroinformatics, 26(10), 2618-2638. https://doi.org/10.2166/hydro.2024.143
- 4. Alfatlawi, T. J., & Hussein, A. H. (2024c). A review of studying the flow characteristics in branching open channels. International Journal of Heat & Technology, 42(2). https://doi.org/10.18280/ ijht.420222
- 5. Ali, A., Al-Murshedi, A. S. N., Al-Okbi, Y., & Saad, H. A. K. (2022). Investigations for the critical vehicle velocities on a curved path. In AIP Conference Proceedings 2386(1). AIP Publishing. https://doi.org/10.1063/5.0067921
- 6. Al-Wahid, A., Wisam, A., Saad, H. A. K., Hasan, Z. H., & Sopian, K. (2022). Experimental study of the performance of hemispherical solar still with optimum value of rocks as heat transfer enhancers. AIMS Energy, 10(4). https://doi.org/10.3934/ energy.2022040
- 7. Ali, S.S., Al-Umary, F.A., Salar, S.G., et al. (2014). Evaluation of selected site location for subsurface dam construction within isayi watershed using GIS and RS Garmiyan Area, Kurdistan Region. Journal of Water Resource and Protection, 6(11): 972–987. https://doi.org/10.4236/jwarp.2014.611092
- 8. Alwash, A., Istepanian, H., Tollast, R., et al. (2018). TowardsSustainable WaterResources ManagementInIraq 30August2018. Available at: www. iraqenergy.org
- 9. Al-Zubedi, A.S. (2022). Groundwater in Iraq. Araa Publication, Baghdad, Iraq.
- 10. Apaydin, A. (2009). Malibogazi groundwater dam: An alternative model for semi-arid regions of Turkey to store and save groundwater. Environmental Earth Sciences, 59(2): 339–345. https://doi.org/10.1007/s12665-009-0030-8
- 11. Burns, I.S., Scott, S., Levick, L., et al. (2004) Automated Geospatial Watershed Assessment (AGWA)-A GIS-Based Hydrologic Modeling Tool: Documentation and User Manual Version 1.4. https://www. tucson.ars.ag.gov/
- 12. Dortaj, A., Maghsoudy, S., Doulati Ardejani, F., et al. (2020a). A hybrid multi-criteria decision making method for site selection of subsurface dams in semi-arid region of Iran. Groundwater for Sustainable Development, 10. https://doi.org/10.1016/j.gsd.2019.100284
- 13. Dortaj, A., Maghsoudy, S., Doulati Ardejani, F., et al. (2020b). Locating suitable sites for construction of subsurface dams in semiarid region of Iran: using modified ELECTRE III. Sustainable Water Resources Management, 6(1). https://doi.org/10.1007/s40899-020-00362-2
- 14. Ebrahimi, J., Reza Moradi, H. and Chezgi, J. (2021). Prioritizing suitable locations for underground dam construction in south east of Bushehr Province. https://doi.org/10.21203/rs.3.rs-161525/v1
- 15. Food and Agriculture Organization of the United Nations (FAO) (2020) Water Scarcity. Available at: http://www.fao.org/neareast/perspectives/
- 16. Forman, S.L. and Stinchcomb, G.E. (2015). Views on grand research challenges for Quaternary geology, geomorphology and environments. Frontiers in Earth Science, 3. https://doi.org/10.3389/feart.2015.00047
- 17. Goodrich, D.C., Guertin, D.P., Burns, I.S., et al. (2011). AGWA: The automated geospatial watershed assessment tool to inform rangeland management. Rangelands, 33(4): 41–47. https://doi.org/10.2111/1551-501X-33.4.41
- 18. Guertin, D.P., Goodrich, D.C., Burns, I.S., et al. (2015). Automated Geospatial Watershed Assessment Tool (AGWA). In Proceedings of the Watershed Management Symposium. 2015. American Society of Civil Engineers (ASCE). 120–130. https://doi.org/10.1061/9780784479322.012
- 19. Hussein, A. H. (2024). Innovative calibration strategies for weirs with half-round crest edge modifications. Instrumentation, Mesures, Métrologies, 23(5). https://doi.org/10.18280/i2m.230502
- 20. Hussein, A. H., Al–Delewy, A. A., & Nasir, M. J. (2018). Estimating the capability of Shatt Al-Hilla within Hilla City to carry the total bed–material load. In: IOP Conference Series: Materials Science and Engineering 454(1), 012020. IOP Publishing.
- 21. IOM (2012) Water Scarcity Iraq Special Report. Available at: http://environmentalmigration.iom.int/ sites/g/files/tmzbdl1411/files/documents/Water%20 Scarcity.pdf (Accessed: 9 August 2024).
- 22. Ishizaka A. and Nemery P. (2013) Multi-criteria decision analysis: methods and software. Wiley.
- 23. Izady, A., Khorshidi, M.S., Nikoo, M.R., et al. (2021). Optimal water allocation from subsurface dams: A risk-based optimization approach. Water Resources Management, 35(12): 4275–4290. https://doi.org/10.1007/s11269-021-02946-9
- 24. Jamali, A.A., Randhir, T.O. and Nosrati, J. (2018) Site suitability analysis for subsurface dams using boolean and fuzzy logic in arid watersheds. Journal of Water Resources Planning and Management, 144(8). https://doi.org/10.1061/(asce) wr.1943-5452.0000947
- 25. Jamali, I.A. (2016) Subsurface dams in water resource management: Methods for assessment and location. Doctoral thesis. https://www.diva-portal. org/smash/record.jsf?pid=diva2%3A902012&dsw id=7229
- 26. Jamali, I.A., Mörtberg, U., Olofsson, B., et al. (2014). A spatial multi-criteria analysis approach for locating suitable sites for construction of subsurface dams in Northern Pakistan. Water Resources Management, 28(14): 5157–5174. https://doi.org/10.1007/s11269-014-0800-2
- 27. Jamali, I.A., Olofsson, B. and Mörtberg, U. (2013). Locating suitable sites for the construction of subsurface dams using GIS. Environmental Earth Sciences, 70(6): 2511–2525. https://doi.org/10.1007/ s12665-013-2295-1
- 28. Karlsson, C.S.J., Jamali, I.A., Earon, R., et al. (2014). Comparison of methods for predicting regolith thickness in previously glaciated terrain, Stockholm, Sweden. Geoderma, 226–227(1): 116–129. https://doi.org/10.1016/j.geoderma.2014.03.003
- 29. Kidd, C. and Huffman, G. (2011). Global precipitation measurement. Meteorological Applications. 18(3): 334–353. https://doi.org/10.1002/met.284
- 30. Kim, J.T., Choo, C.O., Kim, M. Il, et al. (2017). Validity evaluation of a groundwater dam in Oshipcheon River, eastern Korea using a SWAT–MODFLOW model. Environmental Earth Sciences, 76(22). https://doi.org/10.1007/s12665-017-7085-8
- 31. Mahmoud, M.I. and Kasim, M.N. (2019). Sediment yield problems in Khassa Chai Watershed Using Hydrologic Models. Cihan University-Erbil Scientific Journal, 3(1): 34–41. https://doi.org/10.24086/cuesj.v3n1y2019
- 32. Mobarakabadi, M.K. (2012). Model for determination the optimum location of subsurface dam using analytical hierarchy process AHP Mohammad Karimi Mobarakabadi; Model for determination the optimum location of subsurface dam using analytical hierarchy process AHP. Advances in Environmental Biology, 6(3): 1292–1297.
- 33. Nachtergaele, F., Van Velthuizen, H., Verelst, L., et al. (2009). Harmonized World Soil Database - Version 1.1.
- 34. Najdat, M. (2015). Sedimentation Problem in Khassa Chai Reservoir and Methods of Combat. Available at: https://www.researchgate.net/publication/354342859 (Accessed: 13 June 2023).
- 35. NCR. (2023). Inadequate and inequitable: water scarcity and displacement in Iraq. Available at: https://www.nrc.no/globalassets/pdf/reports/water-scarcity-and-displacement-in-iraq/water-scarcity-and-displacement-in-iraq-arabic.pdf (Accessed: 9 August 2024).
- 36. Onder, H. and Yilmaz, M. (2005). Underground Dams - A Tool of Sustainable Development and Management of Groundwater Resources.
- 37. Qureshi, A. S., McCornick, P. G., Sarwar, A., et al. (2010). Challenges and prospects of sustainable groundwater management in the Indus Basin, Pakistan. Water Resources Management, 24(8): 1551– 1569. https://doi.org/10.1007/s11269-009-9513-3
- 38. Kareem, I. R. (2013). Artificial groundwater recharge in Iraq through rainwater harvesting (Case Study). Engineering and Technology Journal, 31(A 6): 1069–1080. https://doi.org/10.30684/etj.31.6a4
- 39. Rohina, A., Ahmadi, H., Moeini, A., et al. (2020). Site selection for constructing groundwater dams through Boolean logic and AHP method (case study: watershed of Imamzadeh Jafar Gachsaran). Paddy and Water Environment, 18(1): 59–72. https://doi.org/10.1007/s10333-019-00764-9
- 40. Saad, H. A. K., Dikici, B., Villarroel, G., & Divo, E. A. (2022). Characterization methods for biomass materials and optimizing heat transfer by using genetic algorithms. In ASTFE Digital Library. Begel House Inc. https://doi.org/10.1615/TFEC2022.emt.040794
- 41. Sadeq, S. N. and Mohammad, J. K. (2022). The application of watershed delineation technique and water harvesting analysis to select and design small dams: A Case study in Qara-Hanjeer Subbasin, Kirkuk-NE Iraq. Iraqi Geological Journal, 55(1): 57–70. https://doi.org/10.46717/igj.55.1B.6Ms-2022-02-22
- 42. Semmens, D.J. et al. (2007) KINEROS2 and the AGWA Modeling Framework. In: H. Wheater, S. Sorooshian, K.D. Sharma (Eds.) Hydrological Modelling in Arid and Semi-Arid Areas. Cambridge University Press, 49-68.
- 43. Sheikhipour, B., Javadi, S. and Banihabib, M. E. (2018). A hybrid multiple criteria decision-making model for the sustainable management of aquifers. Environmental Earth Sciences, 77(19). https://doi.org/10.1007/s12665-018-7894-4
- 44. Talebi, A., Zahedi, E., Hassan, M. A., et al. (2019). Locating suitable sites for the construction of underground dams using the subsurface flow simulation (SWAT model) and analytical network process (ANP) (case study: Daroongar watershed, Iran). Sustainable Water Resources Management, 5(3): 1369– 1378. https://doi.org/10.1007/s40899-019-00314-5
- 45. Tamar-Agha, M. and Mandeel, M. (2015). Basin analysis of Cretaceous to Tertiary selected wells in Kirkuk and Bai Hassan Oil Fields, Kirkuk, Northern Iraq. Available at: https://www.researchgate. net/publication/289479300
- 46. Taslicali, A. K. and Ercan, S. (2006) The Analytic Hierarchy & The Analytic Network Processes In Multicriteria Decision Making: A Comparative Study.
- 47. Tavakoli Sayed Reza Hashemi, S. and Khashei-Siuki Hossein Khozeyme-Nezhad, A. (2018). Comparison of FAHP and FANP Decision-Making Methods in Determining the Appropriate Locations for Constructing an Underground Dam for Water Harvesting., 3(2): 81–91. https://doi.org/10.22077/JWHR.2019.1057
- 48. Wang, Y. and Brubaker, K. (2014). Implementing a nonlinear groundwater module in the soil and water assessment tool (SWAT). Hydrological Processes, 28(9): 3388–3403. https://doi.org/10.1002/hyp.9893
- 49. Wolff, M., Abada, H. H., & Saad, H. A. K. (2024). Numerical investigation of supersonic flow over a wedge by solving 2D euler equations utilizing the steger–Warming flux vector splitting (FVS) scheme. Mathematics, 12(9), 1282. https://doi.org/10.3390/math12091282
- 50. Wei, X., Bailey, R. T., Records, R. M., et al. (2019). Comprehensive simulation of nitrate transport in coupled surface-subsurface hydrologic systems using the linked SWAT-MODFLOW-RT3D model. Environmental Modelling and Software, 122. https://doi.org/10.1016/j.envsoft.2018.06.012
- 51. Yoon K. and Hwang C. L. (1995). Multiple attribute decision making: An introduction. Sage Publications
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-2ccee6e2-f5f4-469c-817a-7edc126a8663
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.