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EQUIVALENCE OF LOW-COST PM10 
CONCENTRATION MEASURING DEVICES 
WITH A REFERENCE METHOD USING 
VARIOUS CORRECTION FUNCTIONS   

ABSTRACT: The aim of the study was to build a corrective model that can be used in the analysed 
devices and to assess the impact of such a model on the values of the measured concentrations. The 
novelty of this study is the test of equivalence with the equivalent reference method for hourly data. 
The study used hourly data of PM10 concentrations measured in a chosen city in Poland. Data was 
collected from two PM10 sensors and a reference device placed in close proximity. In addition, air 
temperature, humidity and wind speed were also measured. Among the tested models, a linear model 
was selected that used primary measurements of PM10, temperature, air velocity, and humidity as the 
most accurate approximation of the actual PM10 concentration level. The results of the analysis 
showed that it is possible to build mathematical models that effectively convert PM10 concentration 
data from tested low-cost electronic measuring devices to concentrations obtained by the reference 
method. 
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Introduction 

Classic methods of measuring pollutant concentrations allow the creation of 
a relatively sparse network of measurement points. The solution to this problem 
is the use of low-cost electronic measuring devices. They allow measurements of 
pollutants to be obtained at high spatial and temporal densities at a reasonable 
cost for their operation. There is a growing demand for low-cost measuring 
devices, but it is necessary to ensure that the measurements they obtain are the 
same as the values believed to be correct. This is possible by performing an 
equivalence test with a reference method. 

Monitoring the state of the environment and counteracting the increase in 
pollution is a growing problem for central and local authorities. Air pollution has 
an impact on the health and quality of life of society, on the functioning of the 
region’s economy, especially in tourism-related industries, and on real estate 
prices. Therefore, measures are taken to obtain reliable information not only 
about the state of pollution but also about the reasons for and causes of its for-
mation. Consequently, it will be possible to manage sources of pollution and 
gradually reduce pollution. 

Particulate matter (PM) plays a very important role among air pollutants. PM 
is a mixture of solids varying in size, origin, and chemical composition. The most 
studied fraction is PM10, whose particles have a diameter of less than 10 m. This 
may result from human activity or natural causes. Their composition and con-
centration depend on the environment, the presence of emission sources, popu-
lation density, terrain, and climatic conditions (John et al., 2004; Jędrak et al., 
2017; Wielgosiński & Zarzycki, 2018; Zhang et al., 2018; Simon et al., 2020). 

An overview of the literature 

Poor air quality can affect the health and well-being of residents, causing or 
exacerbating many diseases, especially in the upper respiratory tract, as well as 
cardiovascular and nervous systems. Therefore, it is necessary to monitor air 
quality in places where people are present (Szyszkowicz et al., 2010; Weir, 2012; 
Dąbrowiecki et al., 2015; Ayres et al., 2006; Jędrak et al., 2017; Zhang et al., 2018). 

For this purpose, it is necessary to build a network of measuring devices to 
monitor PM concentrations. Air monitoring by state institutions (in Poland: GIOŚ 
– Chief Inspectorate of Environmental Protection, WIOŚ – Provincial Inspector-
ate of Environmental Protection) is unfortunately insufficient. The devices that 
they use are very precise, but the measurements are expensive, the measure-
ment network is inadequate, and the results are only obtained once a day. It is, 
therefore, necessary to supplement that network with devices generating similar 
results while eliminating the disadvantages of the state network. In that situa-
tion, low-cost electronic air quality monitoring devices are the optimum choice. 
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Currently, there are many different commercially available devices available that 
operate based on different methods of measuring pollutant concentrations. The 
most used ones utilise optical methods based on laser light reflection from pol-
lutant particles, tapered element oscillating microbalance (TEOM), or methods 
based on the absorption of beta radiation. For each of these devices, it is impor-
tant to ensure that their indications closely approximate the actual (reference) 
values of air pollution. It is necessary to carry out a procedure that checks 
whether the measurements obtained by these devices are close to actual meas-
urements. This procedure is called methods equivalence testing (Buser et al., 
2003; Shin et al., 2011; Owczarek & Rogulski, 2018; Rogulski & Badyda, 2018; 
Sówka et al., 2018; Notardonato et al., 2018; Hodoli et al., 2020). 

Measurements obtained from low-cost electronic sensors are not immedi-
ately suitable for the assessment of pollutant concentrations. They must first be 
translated into the language used to assess pollutant concentrations. In most 
cases, it is also necessary to adjust the results through the appropriate function 
so that they are comparable with the results obtained by the reference method. 
This function is called the corrective function (Jaffe et al., 2022; Giordano et al., 
2021; Wang-Li et al., 2005; Gębicki & Szymańska, 2012; Owczarek et al., 2018; 
Considine et al., 2021). 

The form of the corrective function, the variables used, and the methods of 
its creation can be very different. In recent years, a sizeable body of research has 
emerged regarding the use of offset and gain calibration, temperature and 
humidity correction, sensor array calibration, multi-hop sensor calibration, and 
machine learning using random forests, neuro-fuzzy inference systems, and 
many others (Stavroulas et al., 2020). Most of the studies are based on the data 
on daily pollutant measurements, and only rarely are they carried out for data 
with a higher than hourly time density. This is mainly due to the operation of the 
reference method (gravimetric method) and the sharing of daily data (Maag et 
al., 2018; Zusman et al., 2020; Badura et al., 2019; Zimmerman et al., 2018; 
Kureshi et al., 2022; Alhasa et al., 2018; Chu et al., 2020; Lin et al., 2018; Maag et 
al., 2019; Bisignano et al., 2022). 

The aim of this study is to demonstrate the possibility of building a function 
to correct the concentration measurements from a low-cost PM10 sensor to the 
values compliant with the reference measurements. This function can be imple-
mented by the meter manufacturer in the device. In this study, it has been decided 
to build models based on multiple regression. Such models, as shown by many 
empirical studies, have a satisfactory ability to correct measurements. Having a 
regression model also allows the evaluation of its properties. Once built, the 
model will be used to correct the results of all devices based on the analysed 
sensor without the possibility of its continuous calibration at the place of use. For 
this purpose, reference measurements, which are not available for most loca-
tions, would be necessary. 
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Tools for assessing the quality of regression models are commonly used to 
evaluate the resulting function. However, the mathematical compliance of the 
measurement series does not reflect the purpose of the correction. The aim is to 
obtain measurements that are largely comparable with the reference measure-
ments. Hence, the methodology of testing the equivalence of PM10 measurement 
methods was used to evaluate the selected models. The methodology is based on 
the probability of obtaining results close to the reference. The novelty of the 
study is the use of hourly data for equivalency testing. 

The authors have already dealt with the correction of data from the tested 
device (Owczarek et al., 2020). However, the study used daily data. The models 
built on their basis improve on the raw PM10 measurements satisfactorily enough 
that the device can pass the test of equivalence with the reference method. How-
ever, the basic application of the device is to measure with a much higher obser-
vation density. Data density transition into hourly measurements causes many 
disturbances that do not normally occur in daily data. For this reason, the behav-
iour of the PM10 measurements was also examined at a higher registration den-
sity. The results of the corrective models for both types of data are significantly 
different. 

The use of the concepts of ‘calibration function’ and ‘correction function’ in 
concentration measurements in this article requires additional explanation. 
A calibration function is a tool described in the equivalence test methodology. 
It is used to transform measurement results, mainly to assess their correctness. 
It is a basic tool in equivalence testing and has been defined in the Guide to the 
Demonstration (EC Working Group, 2010). It has a linear form, one independent 
variable (PM10 measurement), its slope coefficient is postulated to be equal to 1, 
and the constant takes the value 0. This tool is recommended in the literature 
mainly for equivalence assessment. The second concept is the correction func-
tion. Its task is to transform the raw measurements of PM10 concentrations to 
values close to the reference measurements as an internal function of the device. 
It should take into account specific features of the measurement method and 
environment and alter the results so that they are correct. It has no restrictions 
as to its construction, functional form, and factors, as it is an informal creation. 
Partial correction is applied by manufacturers in the process of translating sen-
sor operation into the language of pollution concentrations. 

Research methods 

Collecting data 

The study used measurements from an electronic measuring device manu-
factured in Poland. This device is equipped with a laser dust sensor DF Robot 
Gravity SEN0177, based on the optical method. It can measure the concentra-
tions of PM10, PM2.5 and PM1 with virtually any time density (to hundreds of 
measurements per second). Additionally, the device is equipped with tempera-
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ture, humidity, and air pressure sensors, as well as calculation and communica-
tion modules. The device is small and mobile. However, in conformity with the 
procedure described in the “Guide to the Demonstration of Equivalence (…)” 
created by the European Commission Working Group, two sensors (S1, S2) 
located a few meters from the reference device were used in the test of equiva-
lence (EC Working Group, 2010). The air intakes of all devices were at the same 
height. 

The measurements were carried out in the city of Nowy Sącz in the south of 
Poland in the period from 1 February to 30 June 2018. They covered both the 
cold and warm periods, which allowed for testing the operation of sensors in 
various weather conditions. The device works mainly in the conditions of urban 
pollution. In the surroundings, there are low-rise urban buildings, streets, and 
green areas. In the future, the device will be used in similar conditions of urban 
pollution. The measurements obtained by the sensor were aggregated and aver-
aged to hourly measurements. In this way, after removing any missing data and 
erroneous measurements, 3,295 observations were obtained, which were used 
in the study (Figure 1). The values of PM10 concentrations were supplemented 
with the values of reference concentrations as well as air temperature, pressure, 
and humidity (Grubbs, 1950; GIOŚ, 2020). 

Figure 1. PM10 concentrations for the reference device and tested sensors (S1 and S2) 
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Mathematical models 

To better illustrate the relationship between the reference measurements of 
PM10 concentrations and the results of the operation of both sensors, Figures 2 
and 3 show the enlarged fractions of Figure 1 in relation to the winter and sum-
mer periods. In the winter period (Figure 2), at low temperatures, high concen-
trations of PM10 and large differences between the measurements of individual 
devices are visible. In summer (Figure 3), when PM concentrations are low and 
temperatures are high, the differences are relatively small. This may indicate a 
significant influence of the PM concentration and, thus, the temperature on the 
measurement errors. 

Figure 2. PM10 concentrations for the reference device and the tested devices (S1 and S2) 
in a selected week of the cold period (Feb 1-7, 2018) 

The literature also shows a significant influence of air humidity on the cor-
rection function (Maag et al., 2018). However, neither of these factors allows for 
building high-accuracy models. In the study, it was decided to add wind speed to 
the factors in the models. It appears that particularly rapid air flows can distort 
the readings. Using this information, multiple regression models were built with 
different functional forms describing the behaviour of PM10 concentrations of the 
reference device depending on the other variables (GUM, 1999). The best-fit 
models were selected, and the values of expanded uncertainty were calculated 
for them. 
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Figure 3.  PM10 concentrations for the reference device and the tested devices (S1 and S2) 
in a selected week of the warm period (Jun 24- Jul 1, 2018) 

In the further part of the study, only the data from one sensor was used to 
build the corrective function for the measurements of PM10 concentration. 

Cross-validation was used to assess the quality of the obtained models. This 
allows the assessment of the model’s ability to describe reality with the use of 
data that was not used to build this model. All the data we had was randomly 
divided into two parts: the teaching set, containing about 67% of all observa-
tions, and the testing set, containing 33% of all observations. The teaching set 
was used to build and evaluate the properties of the model. For this purpose, the 
adjusted coefficient of determination  takes values from the range [0; 1]), and the 
residual deviation (RMSE – Root Mean Square Error) was used. Models with a 
higher  value and less RMSE were better than the others. Then, empirical values 
were calculated for the resulting models based on the testing set and new RMSE 
values were calculated. Small differences between the original and the new val-
ues indicate the high ability of the model to describe reality and allow its use for 
practical purposes. 

For all the created models, the significance of the structural parameters was 
tested using the t-test. All models with statistically insignificant structural 
parameters were removed from the analysis. The cumulative significance of 
parameter estimates of the model was also verified with the Wald F-test. Large 
values of the F statistics indicate that the whole model is significant and its struc-
ture is correct. In all the tests used, the significance was applied at the level of a 
= 0.05 (Myres, 1990; Czechowski, 2013). 
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The above-mentioned activities allowed for the identification of several 
models that had the best statistical properties and were best suited to empirical 
data. For these selected models, in the further part of the study, an analysis was 
performed using the procedure of testing the equivalence of PM10 measurements, 
in particular, the measurement uncertainty. This allows for assessing the equiva-
lence of the corrected data with the reference data. 

Equivalence testing methodology 

The study began by testing the repeatability of the measurements of the ana-
lysed devices. It was verified whether two meters (sensors) showed the same 
PM10 concentration values. This was done by calculating Between Sampler 
Uncertainty using the following equation: 

  = ∑ ,,  ,      (1)  
  =  ∗ .       (2)  
 
 

 = 2 ∗ ∗ ,    (3)  

 
  − 2 

 
  = 46.37 + 0.51 − 0.25 − 3.29 − 0,31.   (4)  
 
 

 (1) 

where: 
yi,1 and yi,2 – are measurements from two tested sensors. 

According to the equivalence test guidelines (EC Working Group, 2010), the 
sampler uncertainty value lower than or equal to 6.25 (µg/m3)2 indicates slight 
differences between the results obtained by both sensors. This means that both 
devices measure in the same way, and the results of their measurements are 
comparable. 

The second measure used in testing the equivalence of measurement meth-
ods is extended uncertainty (WCM). The extended uncertainty is the product of 
WCM – the relative combined uncertainty of the candidate method (sensor tested 
in the study) and the extension coefficient k, which is a critical value in the t-stu-
dent distribution, for the appropriate number of degrees of freedom and the 
assumed significance of the study (in studies, the value k = 2 is most often used). 

 

 = ∑ ,,  ,      (1)  
  =  ∗ .       (2)  
 
 

 = 2 ∗ ∗ ,    (3)  

 
  − 2 

 
  = 46.37 + 0.51 − 0.25 − 3.29 − 0,31.   (4)  
 
 

 (2) 

However, the relative combined uncertainty is the sum of all estimates of 
measurement errors occurring in the equivalence test process divided by the 
maximum allowable PM10 concentration value (LV), i.e., 50 µg/m3. The relative 
total uncertainty can be expressed by the formula: 

 

 = ∑ ,,  ,      (1)  
  =  ∗ .       (2)  
 
 

 = 2 ∗ ∗ ,    (3)  

 
  − 2 

 
  = 46.37 + 0.51 − 0.25 − 3.29 − 0,31.   (4)  
 
 

 (3) 

where: 
u2 (xi) – is the measurement uncertainty of the reference method. 
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For the gravimetric method, the value 0.67 µg2/m3; [a+(b-1)xi]2 is assumed as 
the measurement uncertainty arising from the deviation of the calibration func-
tion y = a + bx from the identity function (it is assumed that in this function the 
difference between constant a and 0 is statistically insignificant, while the differ-
ence between the slope b and 1 should be considered statistically insignificant); 
while 

 = ∑ ,,  ,      (1)  
  =  ∗ .       (2)  
 
 

 = 2 ∗ ∗ ,    (3)  

 
  − 2 

 
  = 46.37 + 0.51 − 0.25 − 3.29 − 0,31.   (4)  
 
 

 is the residual variance for the calibration function. 

Large values of the expanded uncertainty of the candidate method indicate 
its low usefulness for approximating actual PM10 concentrations. Values close to 
0 mean that the candidate method gives a satisfactory approximation of the ref-
erence method. The limit of acceptance of the method is 25% for extended uncer-
tainty (Gębicki & Szymańska, 2012; Working Group, 2010; GUM, 1999; Dor-
ozhovets, 2007; Gębicki & Szymańska, 2011; Green et al., 2009; Owczarek & 
Rogulski, 2018). 

Results of the research 

The comparison of the functioning of the two sensors showed that the differ-
ences in measurements between them are negligible. The Between Sampler 
Uncertainty value in the analysed period was . On this basis, it can be concluded 
that the indications of both devices have the same values. It also allows us to 
perform the analysis later in the study based on data from one sensor. The S1 
sensor was selected for this analysis. In the rest of the article, the tested sensor 
will be marked as TS. 

Correction functions with satisfactory properties were obtained only for the 
linear form and forms using the quadratic (second-degree) polynomial. The 
results of the estimation, i.e., the functional forms of the models, the values of the 
residual variance RMSE and adjusted coefficients of determination  for the train-
ing set of data and residual variance for the test set, are presented in Table 1 for 
the linear model and Table 2 for the model with the quadratic polynomial. 

In the case of linear models (Table 1), all built models with significant struc-
tural parameters were characterised by a high degree of adjustment to the 
dependent variable. This is confirmed by adjusted determination coefficients  
from 0.876 to 0.897. Those models also successfully passed Wald’s F-test on 
parameter significance throughout the model. The RMSE values for the training 
set and the test set are similar. The differences between the RMSE values for 
training and testing data range from 0.75 to 1.01. The smallest difference was 
obtained for the LM and LM-TVH models, which were 0.85 for the LM-TVH model 
and 0.74 for the LM model. The relative difference between the RMSE values is 
7.4% and 5.8%, respectively. It can, therefore, be concluded that the difference in 
the functioning of the model for training and test data is negligible. Thus, it can 
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be concluded that the models are constructed reliably and could describe reality 
outside the training set. 

Table 1.  Multiple linear regression models for PM10 concentrations and the results of 
model cross-validation 

Model  
description Estimated form RMSE for 

training set Adjusted F test statistics RMSE for 
testing set

LM** yW=14.93+0.51*yT 12.671 0.876 15294.975* 13.412

LM-TVH** yW=46.37+0.51*yT-0.25*T -3.29*V+  
-0.31*H

11.552 0.897 4711.376* 12.403

LM-TV insignificant structural parameters - - - -

LM-TH yW=37.58+0.52*yT-0.21*T -0.26*H 11.682 0.895 6125.838* 12.570

LM-VH yW=37.14+0.53*yT-2.41*V-0.26*H 11.759 0.893 6037.044* 12.833

LM-T insignificantstructuralparameters - - - -

LM-V yW=13.86+0.53*yT+1.86*V 12.618 0.877 7720.975* 13.414

LM-H yW=31.81+0.52*yT-0.22*H 11.830 0.892 8934.002* 12.841

* indicates statistically significant results with a=0,05 
** indicates the models selected for further analysis 
yw – reference concentration of PM10, yT – tested sensor concentration of PM10, T – temperature, V – wind speed,  
H – relative humidity

The best fit was obtained for the model using PM10 concentrations from the 
tested devices TS, temperature T, humidity of the air H, and wind speed V 
(LM-TVH model). The  coefficient of determination for this model had the highest 
value, equal to 0.897, and RMSE had the lowest value of 11.552. This model was 
chosen for further analysis. In addition, the simplest of the linear models using 
only observations from the tested PM10 measuring devices (LM model) was fur-
ther analysed. 

It can be concluded that using the reference method and the devices tested, 
errors in the results grow with increasing concentrations of PM10 (Figures 2 and 
3). This may suggest a non-linear relationship (Czechowski, 2013; Dorozhovets, 
2007). Table 2 presents the results of the estimation of the model using the sec-
ond-degree polynomial for PM10 concentrations and the linear form of the 
remaining variables. 

All obtained models satisfactorily describe the relationship between the 
dependent variable and the vector of independent variables. They have statisti-
cally significant parameters and successfully passed Wald’s F-test on parameter 
significance throughout the model. The adjusted determination coefficients  took 
values from 0.878 to 0.898. RMSE values of the training set ranged from 11.477 
to 12.572. Also, the RMSE values for the test set were similar. It can be concluded 
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that the resulting models have the correct construction. The exception is the 
QP-VH model. This model will not be used in further analyses. 

Table 2.  Multiple regression models for PM10 concentrations for the quadratic polynomial 
and the results of cross-validation of the model 

Model  
description Estimated form RMSE for 

training set Adjusted F test  
statistics

RMSE for 
testing set

QP** yw=13.62+0.57*yT-0.0002*yT
2 12.572 0.878 7784.455* 14.059

QP-TVH** yw=42.40+0.56*yT-0.0001*yT
2-0,19*T+ 

-2.55*V-0.3*H 11.477 0.898 3818.908* 13.037

QP-TV yw=8.79+0.61*yT-0.0002*yT
2+0.08*T +2.73*V 12.454 0.880 3977.971* 14.730

QP-TH yw=34.99+0.58*yT-0.0002*yT
2-0.14*T + 

-0.26*H 11.555 0.897 4708.580* 13.533

QP-VH yw=34.77+0.60*yT-0.0002*yT
2-1.64*V + 

-0.26*H 11.579 0.896 4686.681* 110.101

QP-T yw=12.45+0.58*yT-0.0002*yT
2+0.07*T 12.563 0.878 5199.090* 14.303

QP_V yw=10.36+0.59*yT-0.0002*yT
2+2.63*V 12.471 0.880 5287.417* 14.384

QP-H yw=30.95+0.61*yT-0.0002*yT
2-0.24*H 11.610 0.896 6211.692* 14.137

* indicates statistically significant results with a=0.05
** indicates the models selected for further analysis
yw – reference concentration of PM10, yT – tested sensor concentration of PM10, T – temperature, V – wind speed,  
H – relative humidity

For further analysis, models with the highest  values were used, i.e., models 
using temperature T, humidity H, and wind speed Vin addition to PM10 concen-
trations from the tested devices TS (QP-TVH). The coefficients of determination 
for this model were 0.898 and RMSE – 11.477. Like the linear function, the sim-
plest form of the square model function (QP) was used for the analysis. 

The differences between the RMSE values for training and testing data range 
from 1.49 to 2.53. For the models selected for further analysis, the difference 
was: 1.49 for the QP model and 1.56 for the QP-TVH model. The relative differ-
ence between the RMSE values is 11.9% and 13.6% respectively. That the differ-
ence in the functioning of the model for training and test data is noticeable but 
not too large. The test and training models behave similarly. 

Two models: LF-TVH and QP-TVH have the best features. Of these, the LF-TVH 
model was chosen arbitrarily to present the results of the correction function. 
Figures 4 and 5 show sensor 1 data before (TS-before) and after correction 
(TS-corrected), and reference results. Based on these, it can be concluded that 
the PM10 concentration adjusted for the linear correction function LF-TVH 
approximates the values of concentrations of PM10 obtained using the reference 
method, and the measurement errors are minor and accidental (no systematic 
errors). 
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Figure 4.  PM10 concentrations for the reference device and the tested sensor uncorrected 
data and after applying the LF-TVH correction function in the selected week of 
the cold period (Feb 1-7, 2018) 

Figure 5.  PM10 concentrations for the reference device and the tested sensor uncorrected 
data and after applying the LF-TVH correction function in the selected week of 
the warm period (24 Jun – 1 Jul 2018) 
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It can be assumed that the PM10 concentration values from the tested sensor, 
transformed using each of the chosen models, approximate the concentration 
values obtained using the reference device. The second part of the analysis was 
carried out to confirm this assumption and to indicate the model that best cor-
rects the measurement results of PM10 concentrations. It uses a measurement 
uncertainty testing procedure analogous to that used in the process of testing 
equipment equivalence (EC Working Group, 2010). In the calculation of the 
measurement uncertainty, all the collected data were used without division into 
the training and test sets. 

However, the methodology for testing equivalence was created to compare 
measurements with the gravimetric method. That is the method in which the 
results are obtained every 24 hours. The equivalence assessment criterion, which 
is for the value of the candidate method’s expanded uncertainty to be below 
25%, may not be appropriate due to the higher frequency of measurements and 
the different nature of the data (the data is subject to at least daily fluctuations). 
However, no guidance has been developed on the verification of equivalence for 
hourly data, and therefore, this level has been taken as a critical uncertainty 
value in the study. Work on the creation of new measurement evaluation criteria, 
e.g., for hourly data, is currently running (Duvall et al., 2021). 

For the selected models, the following were calculated: the residual variance 
of the model calibrating the method, the combined uncertainty, and the final 
measure used to assess the equivalence of the methods – expanded uncertainty. 
The results are presented in Table 3. 

Table 3.  Measurement uncertainty of PM10 concentrations corrected with selected 
correction models (candidate method) 

No correction 
function LM LM-TVH QP QP-THV

Residual variance of the calibration model (in [µg/m3]2) 616.49 167.06 140.58 167.50 138.61

Combined uncertainty of the candidate method (in µg/m3) 30.40 3.23 3.10 5.44 3.30

Extended uncertainty of the candidate method 121.6% 12.9% 12.4% 21.7% 13.2%

The values of residual variances range from nearly 138.61 to 167,5 µg2/m3. 
The uncorrected values have almost four times the value of this measure. The 
lowest values of residual variance were obtained for the LM-TVH and QP-TVH 
models. 

The values of all three measures indicate similar effectiveness in all tested 
correction models. 

An examination of the combined uncertainty of the candidate method indi-
cates high efficiency for all selected corrective models. The values of expanded 
uncertainty for these correction models are at a similar level, ranging from 12.4% 
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to 21.7%, while the value of expanded uncertainty for uncorrected data is over 
121%. Values corrected using all the indicated models would meet the require-
ments for measurement uncertainty set by the Guide of Demonstration. Among 
the selected models, the LM-TVH linear model should be considered the most 
effective. It has the best properties of the regression model and the lowest meas-
urement uncertainty. This model takes the following form: 

 

 = ∑ ,,  ,      (1)  
  =  ∗ .       (2)  
 
 

 = 2 ∗ ∗ ,    (3)  

 
  − 2 

 
  = 46.37 + 0.51 − 0.25 − 3.29 − 0,31.   (4)  
 
 

 (4) 

This model is the best fit for the reference data. For the training data sets, the 
value of the adjusted coefficient of determination is 0.897, and the RMSE is 
11.552. For test data, they have values of 0.915 and 12.403, respectively. It can be 
assumed that the cross-validation of the model will produce satisfactory results, 
and the indicated model can be used to correct PM10 concentrations. In five sim-
ilar studies conducted in 2017-2018 on hourly PM10 concentrations, coefficients 
of determination in the range of 0.61-0.84 were obtained (Duvall et al., 2021). 
Therefore, the results of our model should be considered at least satisfactory. 

A similar PM2.5 concentration model for Purple Air sensors has been devel-
oped by the EPA for the entire US. In this model, air humidity is an important 
factor, but temperature and wind speed are not used. Differences in the models 
may, however, result from the assessment of a different fraction of PM. This 
model has been repeatedly confirmed in field tests (Jaffe et al., 2022). 

The estimated model parameters show that the test device overestimates 
PM10 concentration values. This value depends on other factors. An increase in 
temperature, relative humidity and wind speed causes the meter to overestimate 
the obtained values. At low values, the error is small; at high values, the measure-
ment error increases. 

An extended uncertainty of 12.4% was obtained in the equivalence study 
with the reference method. It is sufficient to consider the LM-TVH-corrected data 
as equivalent to the reference method. The correction model obtained in the 
study allows for the effective correction of the results provided by the sensors 
used in the study to a form that allows for demonstrating equivalence with refer-
ence values. This, in turn, allows the use of devices equipped with these sensors 
to properly monitor PM10 concentrations. 

Discussion/Limitation and future research 

The aim of the study was to show that the low-cost electronic device using 
optical PM10 sensors enables measurements consistent with the reference 
method. For this purpose, it was necessary to construct and test a function to 
correct the original measurements for additional factors to reference values. 
Hourly measurement data was used in the study. Due to the additional daily var-
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iability in the daily cycle, the models built on their basis, are more complicated 
and possibly less effective. In practice, however, such data are more often 
obtained from low-cost PM10 sensors. 

In the correction model, as in many other studies, air temperature and 
humidity were used (Stavroulas et al., 2020; Shin et al., 2011; Owczarek & Rogul-
ski, 2018; Rogulski & Badyda, 2018; Duvall et al., 2021; Giordano et al., 2021; 
Shahraiyni & Sodoudi, 2016). Many of these works point to different influences 
of factors, especially relative humidity in different ranges of values (Owczarek & 
Rogulski, 2018; Giordano et al., 2021). This indicates the non-linear nature of 
this interaction. However, it was noticed that such a set of factors is insufficient; 
therefore, it was decided to also include wind speed in the factors. Wind direc-
tion and speed were also indicated as important factors by (Shahraiyni & Sodo-
udi, 2016; Shin et al., 2011; Owczarek & Rogulski., 2018). An additional problem 
is the use of hourly data. Models using such dense data measurements are rela-
tively rare. Examples could be (Shahraiyni & Sodoudi, 2016; Paschalidou et al., 
2011; Fernando et al., 2012; Popescu et al., 2013). The study presents the estima-
tion results of both types of models in which the dependent variables were PM10 
concentration measured with the tested sensor, air temperature, humidity, and 
wind speed, while the independent variable was the reference PM10 concentra-
tion from an electronic device owned by the national measurement network. 

It should be stressed that the study was performed for a specific type of 
PM10-measuring device (although the name of the device was hidden). However, 
each of the devices available on the market, even if they work on similar princi-
ples, has different characteristics. Therefore, this study was intended to demon-
strate that this particular device could be considered suitable for measuring 
PM10 concentrations. The results obtained in the study, specifically the parame-
ter estimates of the model, are incomparable to those obtained for other devices. 
It is only possible to compare the significance of the variables used. 

Most of the research in this area is carried out on daily data. This is consist-
ent with the methodology for testing the equivalence of PM10 with the reference 
method developed by the EC Working Group in Guidance for the Demonstration 
of Equivalence. However, low-cost electronic devices are installed in many cases 
to ensure higher-density measurements. We want to obtain measurements on an 
hourly or even, in some cases, a minute basis. Averaging the data from hourly to 
daily data may change their properties. Some problems with hourly data will dis-
appear after the averages are calculated. In addition to an equivalence test for 
daily data, an equivalence test for data with higher measurement densities is also 
necessary. Unfortunately, it is impossible to use the reference data originating 
from the gravimetric method, as this method functions only for measurements in 
the daily cycle. The novelty of this study is, therefore, the test of equivalence with 
the equivalent reference method for hourly data. 

Many studies on the performance of low-cost PM10 measurement devices use 
a calibration function in the form of a linear function that transforms the meas-
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urements of a candidate method (our sensor) to reference measurements. This 
function uses these two factors exclusively. However, research shows that the 
performance of electronic sensors, including low-cost sensors, can be affected by 
various factors, including atmospheric ones. Primary factors include humidity 
and temperature, but wind speed and direction, as well as device location, are 
not to be underestimated. In addition, it is noted that sensors react differently to 
different levels of PM concentrations, humidity, or temperature. In other words, 
some sensors show the concentrations well when levels of these concentrations 
are average but fail to operate properly with high or low levels. The opposite may 
be the case with other sensors. This is due to the method of pollution detection 
used. Analogous relations apply to the air humidity factor. At low humidity, the 
device shows the measurement results correctly, whereas the results become 
distorted as the humidity increases. The reaction here is non-linear. Therefore, it 
is difficult to correct it by creating linear transformations. In our research, differ-
ent forms of functions were used for correction, including non-linear functions 
(mainly in the form of second-degree polynomials) using a wider package of fac-
tors influencing the operation of the sensor. As a result, it was also possible to 
confirm mathematically the significance of the influence of factors and their type, 
which is an absolute novelty. 

The disadvantage of the model developed is that it is not universal and can-
not be used under all conditions. The requirements of the equivalence test indi-
cate that we should calibrate the equipment for each location and each measur-
ing condition. Initial calibration is usually done in the laboratory, but laboratory 
conditions do not reflect reality. Hence, the devices should be calibrated at the 
location where they will be used, and the equivalence test should take place 
under different weather/climate conditions. It should be noted that device cali-
bration does not have to consider external factors. It is only assumed that for 
instrument calibration, they should be different throughout the data collection 
process. The data collected for our study are from February to June. So, they con-
tain information about the device operating in different weather conditions, for 
low temperatures in winter and high temperatures in late spring and summer. 
Humidity was also different during this period. Our correction function uses 
these factors if they are deemed important. Our aim in collecting the data was to 
record observations with as much variation as possible in PM concentration, 
temperatures, humidity, etc. This allowed us to build an effective model. But, of 
course, it is effective in the statistical sense, not in the sense of a single measure-
ment. It can therefore be assumed that the correction may not be effective when 
specific conditions occur that we have not observed before (extremely low tem-
peratures) but it should respond well to different conditions in other seasons 
and subsequent years, as it has a built-in mechanism to respond to relevant fac-
tors (temperature, humidity, and PM10 concentration). 

Based on the analyses performed, it can be concluded that both linear and 
quadratic models can be used to effectively correct the measurements of PM10 
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concentrations. However, the linear model turns out to be slightly better. It has 
better statistical properties of the regression model, is better suited to the refer-
ence data, and has lower measurement uncertainty. But it also has a simpler 
design. From a computational point of view, it does not matter much, but simple 
models are generally considered to be better. 

Based on the selected model, it should be stated that the functioning of the 
tested PM10 sensor is statistically influenced to a large extent by temperature, air 
humidity, and wind speed. Due to the negative values of the relevant model 
parameters, an increase in the value of these three factors causes a downward 
correction of the PM10 concentration values. The reaction is quite weak for tem-
perature and humidity but quite strong for wind speed. 

By applying the indicated correction function, the measurements of PM10 
concentration obtained with the tested device can be considered equivalent to 
the measurements obtained with the reference method. 

Conclusions 

The primary aim of the study was to demonstrate the possibility of mathe-
matical correction of raw measurement data regarding PM10 concentrations 
from the tested low-cost device and to identify factors that significantly affect the 
operation of this device. An additional difficulty in the study was the use of hourly 
measurements and an attempt to adapt the model to this type of data. These 
goals have been achieved. 

The results of the analysis showed that it is possible to build mathematical 
models that effectively transform PM10 concentration data from the tested, elec-
tronic, low-cost measuring devices to the concentrations obtained using the ref-
erence method. 

The best correction results were obtained for the linear model using PM10 
concentrations, wind speed, air temperature, and relative humidity. The statisti-
cal significance of the parameters in this model indicates a significant impact of 
these factors on the measurements of PM concentrations. The adjusted coeffi-
cient of determination  above 87%, while the value of the expanded uncertainty 
was relatively low and amounted to 12.4%. This model can be used to correct 
raw measurements from the tested device effectively. It can be used in the con-
struction of the tested low-cost device. 

Further work is needed to design corrective functions. It is necessary to con-
firm the operation of this function in other terrain and weather conditions and to 
improve the procedure in terms of new measurement data and possibly other 
functional forms. Some further attempts planned for the 2020-2021 period failed 
due to the pandemic and will be carried out shortly. 
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RÓWNOWAŻNOŚĆ NISKOKOSZTOWYCH URZĄDZEŃ DO POMIARU 
STĘŻENIA PM10 Z METODĄ REFERENCYJNĄ WYKORZYSTUJĄCĄ 
RÓŻNE FUNKCJE KOREKCYJNE 

STRESZCZENIE : Celem badań było zbudowanie modelu korekcyjnego, który można zastosować 
w analizowanych urządzeniach oraz ocena wpływu takiego modelu na wartości mierzonych stężeń. 
Nowością w pracy jest test równoważności z równoważną metodą referencyjną dla danych godzino-
wych. W pracy wykorzystano dane godzinowe stężeń pyłu PM10 zmierzonych w wybranym mieście 
w Polsce. Dane były zbierane z dwóch czujników PM10 i urządzenia referencyjnego umieszczonych 
w bliskiej odległości. Dodatkowo mierzono również temperaturę powietrza, wilgotność i prędkość wia-
tru. Spośród testowanych modeli wybrano model liniowy, który wykorzystując pierwotne pomiary 
PM10, temperatury, prędkości powietrza i wilgotności, najdokładniej przybliżał rzeczywisty poziom stę-
żenia PM10. Wyniki analizy wykazały, że możliwe jest zbudowanie modeli matematycznych, które sku-
tecznie przeliczają dane o stężeniach PM10 z badanych tanich elektronicznych urządzeń pomiarowych 
na stężenia uzyskane metodą referencyjną. 

SŁOWA KLUCZOWE : PM10, zarządzanie zanieczyszczeniem środowiska, jakość powietrza, nisko-
kosztowe urządzenia, równoważność pomiaru 


