PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Early predicting a risk of preterm labour by analysis of antepartum electrohysterograhic signals

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This study is aimed at evaluation of the capability to indicate the preterm labour risk by analysing the features extracted from the signals of electrical uterine activity. Free access database was used with 300 signals acquired in two groups of pregnant women who delivered at term (262 cases) and preterm (38 cases). Signal features comprised classical time domain description, spectral parameters and nonlinear measures of contractile activity. Their mean values were calculated for all the contraction episodes detected in each record and their statistical significance for recognition of two groups of recordings was provided. Obtained results were related to the previous study where the same features were applied but they were determined for entire signals. Influence of electrodes location, band-pass filter settings and gestation week was investigated. The obtained results showed that a spectral parameter – the median frequency was the most promising indicator of the preterm labour risk.
Twórcy
autor
  • Institute of Medical Technology and Equipement ITAM, Roosevelta 118, 41-800 Zabrze, Poland
autor
  • Institute of Medical Technology and Equipement ITAM, Roosevelta 118, 41-800 Zabrze, Poland
autor
  • Institute of Medical Technology and Equipement ITAM, Roosevelta 118, 41-800 Zabrze, Poland
autor
  • Institute of Medical Technology and Equipement ITAM, Roosevelta 118, 41-800 Zabrze, Poland
autor
  • Institute of Electronics, Silesian University of Technology, Gliwice, Poland
autor
  • Institute of Electronics, Silesian University of Technology, Gliwice, Poland
Bibliografia
  • [1] Maner WL, Garfield RE, Maul H, Olson G, Saade G. Predicting term and preterm delivery with a transabdominal uterine electromyography. Obstet Gynecol 2003;101:1254–60.
  • [2] Wrobel J, Jezewski J, Horoba K, Pawlak A, Czabanski R, Jezewski M, et al. Medical cyber-physical system for home telecare of high-risk pregnancy – design challenges and requirements. J Med Imaging Health Inform 2015;5(6): 1295–301.
  • [3] Brzozowska E, Oczeretko E, Pawlinski B, Gajewski Z. Telemetry recording of the electromyographic activity of female reproduction tract. In: Pietka E, Kawa J, Wieclawek W, editors. Information technologies in biomedicine advances in soft computing series, vol. 4. Springer Verlag; 2014. p. 101–12.
  • [4] De Lau H, Rabotti C, Bijloo R, Rooijakkers MJ, Mischi M, Oei GS. Automated conduction velocity analysis in the electrohysterogram for prediction of imminent delivery: a preliminary study. Comput Math Methods Med 2013. Article ID 627976, 7 p.
  • [5] Vinken M, Rabotti C, Mischi M, Oei SG. Accuracy of frequency-related parameters of the electrohysterogram for predicting preterm delivery: a review of the literature. Obstet Gynecol Surv 2009;64:529–41.
  • [6] Jacod BC, Graatsma EM, Van Hagen E, Visser GH. A validation of electrohysterography for uterine activity monitoring during labour. J Maternal–Fetal Neonatal Med 2010;23:17–22.
  • [7] Jezewski J, Horoba K, Matonia A, Wrobel J. Quantitative analysis of contraction patterns in electrical activity signal of pregnant uterus as an alternative to mechanical approach. Physiol Meas 2005;26:753–67.
  • [8] La Rosa PS, Nehorai A, Eswaran H, Lowery CL, Preissl H. Detection of uterine EMG contractions using a multiple change point estimator and the K-means cluster algorithm. IEEE Trans Biomed Eng 2008;55:453–67.
  • [9] Czabanski R, Wrobel J, Jezewski J, Leski J, Jezewski M. Efficient evaluation of fetal wellbeing during pregnancy using methods based on statistical learning principles. J Med Imaging Health Inform 2015;5(6):1327–36.
  • [10] Czabanski R, Jezewski J, Horoba K, Jezewski M. Fetal state assessment using fuzzy analysis of the fetal heart rate signals – agreement with the neonatal outcome. Biocybern Biomed Eng 2013;33(3):145–55.
  • [11] Czabanski R, Jezewski M, Wrobel J, Horoba K, Jezewski J. Neuro-fuzzy approach to the classification of fetal cardiotocograms. IFMBE Proceedings of 14th Nordic Baltic Conference on Biomedical Engineering and Medical Physics, vol. 20; 2008, June. p. 446–9.
  • [12] Jezewski M, Wrobel J, Labaj P, Leski J, Henzel N, Horoba K, et al. Some practical remarks on neural networks approach to fetal cardiotocograms classification. Proceedings of 29th Annual International Conference of the IEEE Engineering in Medicine and Biology Society; 2007, August. p. 5170–3.
  • [13] Lucovnik M, Manner WL, Chambliss LR, Blumrick R, Balducci J, Novak-Antolic Z, et al. Noninvasive uterine electromyography for prediction of preterm delivery. Am J Obstet Gynecol 2011;204:228e1–310e.
  • [14] Rabotti C, Mischi M, Oei SG, Bergmans JW. Noninvasive estimation of the electrohysterographic action-potential conduction velocity. IEEE Trans Biomed Eng 2010;57:2178–87.
  • [15] Alberola-Rubioa J, Prats-Boludaa G, Ye-Lina Y, Valerob J, Peralesb A, Garcia-Casadoa J. Comparison of non-invasive electrohysterographic recording techniques for monitoring uterine dynamics. Med Eng Phys 2013;35:1736–43.
  • [16] Horoba K, Jezewski J, Wrobel J, Matonia M, Czabanski R, Jezewski M. Analysis of uterine contractile wave propagation in electrohysterogram for assessing the risk of preterm birth. J Med Imaging Health Inform 2015;5(6): 1287–94.
  • [17] Alamedine D, Khalil M, Marque C. Comparison of different EHG feature selection methods for the detection of preterm labor. Comput Math Methods Med 2013. http://dx.doi.org/10.1155/2013/485684. Article ID 485684, 9 p.
  • [18] Euliano TY, Nguyen M, Marossero D, Edwards RK. Monitoring contractions in obese parturients. Obstet Gynecol 2007;109(5):1136–40.
  • [19] Radomski D, Grzanka A, Graczyk S, Przelaskowski A. Assessment of uterine contractile activity during a pregnancy based on a nonlinear analysis of the uterine electromyographic signal. In: Pietka E, Kawa K, editors. Advances in soft computing information technology in biomedicine. Springer; 2008. p. 325–34.
  • [20] Goldberger AL, Amaral LAN, Glass L, Hausdorff JM, Ivanov PC, Mark RG, et al. PhysioBank, PhysioToolkit, and PhysioNet: components of a new research resource for complex physiologic signals. Circulation 2000;101(23). http://circ.ahajournals.org/cgi/content/full/101/23/e215, 7 p.
  • [21] Fele-Zorz G, Kavsek G, Novak-Antolic Z, Jager F. A comparison of various linear and non-linear signal processing techniques to separate uterine EMG records of term and pre-term delivery groups. Med Biol Eng Comput 2008;46(9):911–22.
  • [22] Kotas M, Jezewski J, Horoba K, Matonia A. Application of spatio-temporal filtering to fetal electrocardiogram enhancement. Comput Methods Programs Biomed 2011;104 (1):1–9.
  • [23] Kotas M, Jezewski J, Matonia A, Kupka T. Towards noise immune detection of fetal QRS complexes. Comput Methods Programs Biomed 2010;97(3):241–56.
  • [24] Rooijakkers MJ, Rabotti C, Oei SG, Aarts RM, Mischi M. Low-complexity intrauterine pressure estimation using the Teager energy operator on electrohysterographic recordings. Physiol Meas 2014;35:1215–28.
  • [25] Rabotti C, Mischi M, Van Laar J, Oei SG, Bergmans JW. Estimation of internal uterine pressure by joint amplitude and frequency analysis of electrohysterographic signals. Physiol Meas 2008;29:829–41.
  • [26] Diab A, Hassan M, Boudaoud S, Marque C, Karlsson B. Nonlinear estimation of coupling and directionality between signals: application to uterine EMG propagation. Proceedings of 35th International Conference of IEEE/EMBS; 2013. p. 4366–9.
  • [27] Radomski D, Malkiewicz A. Identification of a nonlinear association between components of the electrohysterographical signal. Int J Electron Telecommun 2010;56:287–90.
  • [28] Rooijakkers MJ, Song S, Rabotti C, Oei SG, Bergmans JWM, Cantatore E, et al. Influence of electrode placement on signal quality for ambulatory pregnancy monitoring. Comput Math Methods Med 2014. http://dx.doi.org/10.1155/2014/960980. Article ID 960980, 12 p.
  • [29] Jezewski J, Matonia A, Czabanski R, Horoba K, Kupka T. Classification of uterine electrical activity patterns for early detection of preterm birth. In: Burduk R, Jackowski K, Kurzynski M, Wozniak M, Zolnierek A, editors. Computer Recognition Systems 8 – CORES 2013 advances in intelligent systems and computing AISC, vol. 226. Springer Heidelberg; 2013. p. 559–68.
  • [30] Oczeretko E, Kitlas A, Swiatecka J, Borowska M, Laudanski T. Nonlinear dynamics in uterine contractions analysis. In: Losa G, Merlini D, Nonnemacher T, Weibel E, editors. Fractals in biology and medicine book series: mathematics and biosciences in interaction, vol. 4. Basel: Birkhäuser Verlag; 2005. p. 215–22.
  • [31] Moslem B, Khalil M, Marque C, Diab MO. Energy distribution of uterine electromyography signals. J Med Biol Eng 2010;30 (6):361–6.
  • [32] Richman JS, Moorman JR. Physiological time-series analysis using approximate entropy and sample entropy. Am J Physiol: Heart Circ Physiol 2000;278:2039–49.
  • [33] Vrhovec J, Macek-Lebar A, Rudel D. Evaluating uterine electrohysterogram with entropy. 11th Mediterranean Conf Med Biomed Eng Comput 2007;16:144–7.
  • [34] Moslem B, Khalil M, Marque C, Diab MO. Complexity analysis of the uterine electromyography. 32nd Annual International Conference of the IEEE EMBS; 2010. pp. 2802–5.
  • [35] Rosenstein MT, Collins JJ, De Luca CJ. A practical method for calculating largest Lyapunov exponents from small data sets. Physica D 1993;65:117–34.
  • [36] Verdenik I, Pajntar M, Leskosek B. Uterine electrical activity as predictor of preterm birth in women with preterm contractions. Eur J Obstet Gynecol 2001;95(2):149–53.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-2ccaa34f-cd44-438a-9ce6-417eb4eeac01
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.