PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Automated detection of Parkinson's disease using minimum average maximum tree and singular value decomposition method with vowels

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this study, a novel method to automatically detect Parkinson's disease (PD) using vowels is proposed. A combination of minimum average maximum (MAMa) tree and singular value decomposition (SVD) are used to extract the salient features from the voice signals. A novel feature signal is constructed from 3 levels of MAMa tree in the preprocessing phase. The SVD operator is applied to the constructed signal for feature extraction. Then 50 most distinctive features are selected using relief feature selection technique. Finally, k nearest neighborhood (KNN) with 10-fold cross validation is used for the classification. We have achieved the highest classification accuracy rate of 92.46% using vowels with KNN classifier. The dataset used consists of 3 vowels for each person. To obtain individual results, post processing step is performed and best result of 96.83% is obtained with KNN classifier. The proposed method is ready to be tested with huge database and can aid the neurologists in the diagnosis of PD using vowels.
Twórcy
  • Department of Digital Forensics Engineering, Technology Faculty, Firat University, Elazig, Turkey
autor
  • Department of Digital Forensics Engineering, Technology Faculty, Firat University, Elazig, Turkey
  • Ngee Ann Polytechnic, Department of Electronics and Computer Engineering, Singapore; Department of Biomedical Engineering, School of Science and Technology, Singapore University of Social Science (SUSS), Singapore; Department of Biomedical Engineering, Faculty of Engineering, University of Malaya, Malaysia
Bibliografia
  • [1] Lang AE, Lozano AM. Parkinson's disease. N Engl J Med 1998;339:1130–43.
  • [2] De Lau LM, Breteler MM. Epidemiology of Parkinson's disease. Lancet Neurol 2006;5:525–35.
  • [3] Suratos CTR, Saranza GRM, Sumalapao DEP, Jamora RDG. Quality of life and Parkinson's disease: Philippine translation and validation of the Parkinson's disease questionnaire. J Clin Neurosci 2018;54:156–60.
  • [4] Umay E, Ozturk E, Gurcay E, Delibas O, Celikel F. Swallowing in Parkinson's disease: how is it affected? Clin Neurol Neurosurg 2019;177:37–41.
  • [5] Torres-Ortega PV, Saludas L, Hanafy AS, Garbayo E, Blanco- Prieto MJ. Micro-and nanotechnology approaches to improve Parkinson's disease therapy. J Control Release 2018.
  • [6] Faivre F, Joshi A, Bezard E, Barrot M. The hidden side of Parkinson's disease: studying pain, anxiety and depression in animal models. Neurosci Biobehav Rev 2018.
  • [7] Tao A, Chen G, Deng Y, Xu R. Accuracy of transcranial sonography of the Substantia Nigra for detection of Parkinson's disease: a systematic review and meta- analysis. Ultrasound Med Biol 2019.
  • [8] Gupta D, Sundaram S, Khanna A, Hassanien AE, De Albuquerque VHC. Improved diagnosis of Parkinson's disease using optimized crow search algorithm. Comput Electr Eng 2018;68:412–24.
  • [9] Weiss D, Milosevic L, Gharabaghi A. Deep brain stimulation of the substantia nigra for freezing of gait in Parkinson's disease: is it about stimulation frequency? Parkinsonism Relat Disord 2018.
  • [10] Toomsoo T, Liepelt-Scarfone I, Berg D, Kerner R, Pool A-H, Kadastik-Eerme L, et al. Effect of age on substantia nigra hyper-echogenicity in Parkinson's disease patients and healthy controls. Ultrasound Med Biol 2019;45:122–8.
  • [11] Mostafa SA, Mustapha A, Mohammed MA, Hamed RI, Arunkumar N, Ghani MKA, et al. Examining multiple feature evaluation and classification methods for improving the diagnosis of Parkinson's disease. Cogn Syst Res 2019;54:90–9.
  • [12] Gelb DJ, Oliver E, Gilman S. Diagnostic criteria for Parkinson disease. Arch Neurol 1999;56:33–9.
  • [13] Nilashi M, Ibrahim O, Samad S, Ahmadi H, Shahmoradi L, Akbari E. An analytical method for measuring the Parkinson's disease progression: a case on a Parkinson's telemonitoring dataset. Measurement 2019.
  • [14] Zeng W, Yuan C, Wang Q, Liu F, Wang Y. Classification of gait patterns between patients with Parkinson's disease and healthy controls using phase space reconstruction (PSR), empirical mode decomposition (EMD) and neural networks. Neural Netw 2019;111:64–76.
  • [15] Sharma P, Sundaram S, Sharma M, Sharma A, Gupta D. Diagnosis of Parkinson's disease using modified grey wolf optimization. Cogn Syst Res 2019;54:100–15.
  • [16] Pereira CR, Pereira DR, Weber SA, Hook C, de Albuquerque VHC, Papa JP. A survey on computer-assisted Parkinson's disease diagnosis. Artif Intell Med 2018.
  • [17] Nilashi M, Ibrahim O, Ahmadi H, Shahmoradi L, Farahmand M. A hybrid intelligent system for the prediction of Parkinson's disease progression using machine learning techniques. Biocybern Biomed Eng 2018;38:1–15.
  • [18] Calne D, Snow B, Lee C. Criteria for diagnosing Parkinson's disease. Ann Neurol: Off J Am Neurol Assoc Child Neurol Soc 1992;32:S125–7.
  • [19] Wu K, Zhang D, Lu G, Guo Z. Learning acoustic features to detect Parkinson's disease. Neurocomputing 2018;318:102–8.
  • [20] Yuvaraj R, Murugappan M, Acharya UR, Adeli H, Ibrahim NM, Mesquita E. Brain functional connectivity patterns for emotional state classification in Parkinson's disease patients without dementia. Behav Brain Res 2016;298:248–60.
  • [21] Bhat S, Acharya UR, Hagiwara Y, Dadmehr N, Adeli H. Parkinson's disease: cause factors, measurable indicators, and early diagnosis. Comput Biol Med 2018.
  • [22] Oh SL, Hagiwara Y, Raghavendra U, Yuvaraj R, Arunkumar N, Murugappan M, et al. A deep learning approach for Parkinson's disease diagnosis from EEG signals. Neural Comput Appl 2018;1–7.
  • [23] Yuvaraj R, Acharya UR, Hagiwara Y. A novel Parkinson's disease diagnosis index using higher-order spectra features in EEG signals. Neural Comput Appl 2018;30:1225–35.
  • [24] Loconsole C, Cascarano GD, Brunetti A, Trotta GF, Losavio G, Bevilacqua V, et al. A model-free technique based on computer vision and sEMG for classification in Parkinson's disease by using computer-assisted handwriting analysis. Pattern Recognit Lett 2018.
  • [25] Mostafa SA, Mustapha A, Khaleefah SH, Ahmad MS, Mohammed MA. Evaluating the performance of three classification methods in diagnosis of Parkinson's disease. International Conference on Soft Computing and Data Mining; 2018. pp. 43–52.
  • [26] Pereira CR, Pereira DR, Rosa GH, Albuquerque VH, Weber SA, Hook C, et al. Handwritten dynamics assessment through convolutional neural networks: an application to Parkinson's disease identification. Artif Intell Med 2018;87:67–77.
  • [27] Gupta D, Julka A, Jain S, Aggarwal T, Khanna A, Arunkumar N, et al. Optimized cuttlefish algorithm for diagnosis of Parkinson's disease. Cogn Syst Res 2018;52:36–48.
  • [28] Sakar CO, Serbes G, Gunduz A, Tunc HC, Nizam H, Sakar BE, et al. A comparative analysis of speech signal processing algorithms for Parkinson's disease classification and the use of the tunable Q-factor wavelet transform. Appl Soft Comput 2019;74:255–63.
  • [29] Joshi D, Khajuria A, Joshi P. An automatic non-invasive method for Parkinson's disease classification. Comput Methods Programs Biomed 2017;145:135–45.
  • [30] Gottapu RD, Dagli CH. Analysis of Parkinson's disease data. Procedia Comput Sci 2018;140:334–41.
  • [31] Lacy SE, Smith SL, Lones MA. Using echo state networks for classification: a case study in Parkinson's disease diagnosis. Artif Intell Med 2018;86:53–9.
  • [32] Cigdem O, Beheshti I, Demirel H. Effects of different covariates and contrasts on classification of Parkinson's disease using structural MRI. Comput Biol Med 2018;99:173–81.
  • [33] Zeng W, Liu F, Wang Q, Wang Y, Ma L, Zhang Y. Parkinson's disease classification using gait analysis via deterministic learning. Neurosci Lett 2016;633:268–78.
  • [34] Han C-X, Wang J, Yi G-S, Che Y-Q. Investigation of EEG abnormalities in the early stage of Parkinson's disease. Cogn Neurodyn 2013;7:351–9.
  • [35] Afonso LC, Rosa GH, Pereira CR, Weber SA, Hook C, Albuquerque VHC, et al. A recurrence plot-based approach for Parkinson's disease identification. Future Gener Comput Syst 2019;94:282–92.
  • [36] Rios-Urrego C, Vásquez-Correa J, Vargas-Bonilla J, Nöth E, Lopera F, Orozco-Arroyave J. Analysis and evaluation of handwriting in patients with Parkinson's disease using kinematic, geometrical, and non-linear features. Comput Methods Programs Biomed 2019.
  • [37] Khorasani SM, Hodtani G, Kakhki MM. Investigation and comparison of ECG signal sparsity and features variations due to pre-processing steps. Biomed Signal Process Control 2019;49:87–95.
  • [38] Powar OS, Chemmangat K, Figarado S. A novel pre-processing procedure for enhanced feature extraction and characterization of electromyogram signals. Biomed Signal Process Control 2018;42:277–86.
  • [39] Chen Y, Huang T-Z, Zhao X-L, Deng L-J. Hyperspectral image restoration using framelet-regularized low-rank nonnegative matrix factorization. Appl Math Model 2018;63:128–47.
  • [40] Yücelbas S, Yücelbas C, Tezel G, Özsen S, Yosunkaya S. Automatic sleep staging based on SVD, VMD, HHT and morphological features of single-lead ECG signal. Expert Syst Appl 2018;102:193–206.
  • [41] Malik SI, Akram MU, Siddiqi I. Localization and classification of heartbeats using robust adaptive algorithm. Biomed Signal Process Control 2019;49:57–77.
  • [42] Nishad A, Upadhyay A, Pachori RB, Acharya UR. Automated classification of hand movements using tunable-Q wavelet transform based filter-bank with surface electromyogram signals. Future Gener Comput Syst 2019;93:96–110.
  • [43] Urbanowicz RJ, Meeker M, La Cava W, Olson RS, Moore JH. Relief-based feature selection: introduction and review. J Biomed Inform 2018.
  • [44] Urbanowicz RJ, Olson RS, Schmitt P, Meeker M, Moore JH. Benchmarking relief-based feature selection methods for bioinformatics data mining. J Biomed Inform 2018;85:168–88.
  • [45] Tuo Q, Zhao H, Hu Q. Hierarchical feature selection with subtree based graph regularization. Knowl Based Syst 2019;163:996–1008.
  • [46] Cleophas TJ, Zwinderman AH, Cleophas-Allers HI. Machine learning in medicine. Springer; 2013.
  • [47] Emmert-Streib F, Dehmer M. Information theory and statistical learning. Springer; 2009.
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-2cc9b53a-8437-410a-962d-3a4512af59b4
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.