PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Investigation of lithofacies predictability using the Shannon (information) entropy theorem : the Upper Eocene “Górka Lubartowska” amber deposit of the Siemien Formation

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
A generalized workflow of scientific process requires data to be obtained, reprocessed, integrated, optionally transformed, modelled and finally interpreted in order to understand the underlying process. This procedure is affected by both objective and subjective uncertainties. In parallel with the development of geostatistics, the role of uncertainty has been widely investigated in geosciences. This has led to the introduction of new concepts, taken for example from thermodynamics, such as entropy. Predicting the subsurface is an especially thankless effort, as data are driven from spatially highly limited direct sources. The following paper provides an review of various applications of the Shannon entropy theorem in geoscience. Information entropy, initially proposed by Shannon (1948) provides an objective measure of overall system uncertainty. Significant concern has been focused on the application of Shannon entropy to provide an objective measure of joint system uncertainty and visualization of its spatial distribution. The area of extensively drilled Eocene amber-bearing deposits located in the Lubelskie voivodeship was selected as a case study to investigate the quality of prediction stochastic lithofacies models. The importance of adding secondary variables to a stochastic model is also reviewed here. Adding new data and rerunning the simulation allows assessment of its impact on the predictability of a stochastic model. The most important conclusion from the study is that the deposition of amber-bearing lithofacies occurred mostly in the northern part of the area investigated, as shown also by ongoing exploitation of the deposit.
Rocznik
Strony
art. no. 16
Opis fizyczny
Bibliogr. 51 poz., rys., wykr.
Twórcy
  • University of Warsaw, Faculty of Geology, Żwirki i Wigury 93, 02-089 Warszawa
Bibliografia
  • 1. Allard, D., Comunian, A., Renard, P., 2011. Probability aggregation methods in geoscience. Research Report No. 48. Unite Biostatistique et Processus Spatiaux Institut National de la Recherche Agronomique Avignon, France.
  • 2. Armstrong, M., Galli, A., Beucher, H., Le Loc'h, G., Renard, D., Doligez, B., Eschard, R., Geffroy, F., 2011. Plurigaussian Simulations in Geosciences. Springer, Berlin, Heidelberg.
  • 3. Bianchi, M., Pedretti, D., 2018. An entrogram-based approach to describe spatial heterogeneity with applications to solute transport in porous media. Water Resources Research, 54: 4432-4448.
  • 4. Boucher, A., 2011. Strategies for modeling with multiple-point simulation algorithms. Closing the Gap. Gussow Geoscience Conference.
  • 5. Caers, J., 2011. Modeling Uncertainty in the Earth Sciences. Wiley Blackwell.
  • 6. Caers, J., Zhang, T., 2002. Multiple-point geostatistics: a quantitative vehicle for integrating geologic analogs into multiple reservoir models. AAPG Memoir, 80: 383-394.
  • 7. Chiogna, G., Hochstetler, D.L., Bellin, A., Kitanidis, P.K., Rolle, M., 2012. Mixing, entropy and reactive solute transport. Geophysical Research Letters, 39: L20405.
  • 8. Comunian, A., Allard, D., Renard, P., 2012. A review of probability aggregation methods in Earth sciences. The International Geostatistics Congress, Oslo, Norway, June 11-15.
  • 9. Czuryłowicz, K., 2013. Geologiczno-złożowe uwarunkowania nagromadzeń bursztynu w utworach paleogeńskich w rejonie Parczewa i Lubartowa (in Polish). Ph.D. Thesis, University of Warsaw.
  • 10. Czuryłowicz, K., Lejzerowicz, A., Kowalczyk, S., Wysocka, A., 2014. The origin and depositional architecture of Paleogene quartz-glauconite sands in the Lubartów area, eastern Poland. Geological Quarterly, 58 (1): 125-144.
  • 11. Deutsch, C.V., 1998. A short note on cross validation of facies sumilation methods. Centre for Computational Geostatistics. Annual Report no. 1.
  • 12. Deutsch, C.V., 2002. Geostatistical Reservoir Modeling. Oxford University Press.
  • 13. Deutsch, C.V., Journel, A.G., 1992. GSLIB: Geostatistical Software Library and User's Guide. New York, Oxford University Press.
  • 14. Doktor, M., Krawczyk, A., Mastej, W., 2010. Testing the randomness of lithostratigraphic successions with the Markov Chain methods. Annales Societatis Geologorum Poloniae, 80: 163-166.
  • 15. Doktor, M., Krawczyk, A.J., 2010. Model entropii dla węglonośnych utworów karbonu górnego Zagłębia Górnośląskiego i próba jego geologicznej interpretacji (in Polish). Geologia. Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie, 36: 37-47.
  • 16. Falivene, O., Arbues, P., Gardiner, A., Pickup, G., Munoz, J.A., Cabrera, L., 2006. Best practice stochastic facies modeling from a channel-fill turbidite sandstone analog (the Quarry outcrop, Eocene Ainsa basin, northeast Spain). AAPG Bulletin, 90: 1003-1029.
  • 17. Gotway, C.A., Young, L.J., 2002. Combining incompatibile spatial data. Journal of the American Statistical Association, 97: 632-648.
  • 18. Gringarten, E., Deutsch C.V., 2001b. Teacher's aide: variogram interpretation and modelling. Mathematical Geology, 33: 507-534.
  • 19. Hattori, I., 1976. Entropy in Markov chains and discrimination of cyclic patterns in lithologic successions. Mathematical Geology, 8: 477-497.
  • 20. Harding, A., Strebelle, S., Levy, M., Thorne, J., Xie, D., Leigh, S., Preece, R., Scamman, R., 2004. Reservoir facies modelling: new advances in MPS. In. Geostatistics Banff (eds. O. Leuangthong and C.V. Deutsch) 1: 559-568. Springer, Netherlands.
  • 21. Hong, S., Ortiz, J.M., Deutsch, C.V., 2007. Integration of Disparate Data with Logratios of Conditional Probabilities. Petroleum Geostatistics 2007. Cascais, Portugal: 10-14.
  • 22. Hu, L.Y., Chugundova, T., 2008. Multiple-point statistics for modeling subsurface heterogeneity: a comprehensive review. Water Resources Research, 44: 14.
  • 23. Journel, A., 2002. Combining knowledge from diverse sources: an alternative to traditional data independence hypotheses. Mathematical Geology, 34: 573-596.
  • 24. Kelkar, M., Perez, G., 2002. Applied Geostatistics for Reservoir Characterization. Society of Petroleum Engineers Inc. Richardson, Texas.
  • 25. Kramarska, R., Kasiński, J.R., 2008. Prognozy zasobowe bursztynu w Polsce (in Polish). National Geological Archive. no 38/2009. Państwowy Instytut Geologiczny, Warszawa.
  • 26. Krawczyk, A.J., 1979. Markov chain as stochastic model of flysch sedimentation. Annales Societatis Geologorum Poloniae, 49: 155-164.
  • 27. Krawczyk, A.J., 1980. Some characteristics of the sedimentation process of the Podhale Flysch. Annales Societatis Geologorum Poloniae, 50: 55-98.
  • 28. Labourdette, R., Hegre, J., Imbert, P., Insalaco, E., 2008. Reservoir-scale 3D sedimentary modelling: approaches to integrate sedimentology into a reservoir characterization workflow. Geological Society Special Publications, 309: 75-85.
  • 29. Levy, M, Harris, P.M., Strebelle, S., 2008a. Carbonate reservoir modeling using Multiple-Point Statistics (MPS)/Facies Distribution Modeling (FDM). Search and Discovery Article #40293
  • 30. Levy, M, Harris,P. M., Strebelle, S., Rankey, C., 2008b. Geomorphology of carbonate systems and reservoir modeling: Carbonate Training Images, FDM Cubes, and MPS Simulations. Search and Discovery Article #40289
  • 31. Liu, Y., Harding, A., Gilbert, R., Journel, A., 2005. A workflow for multiple-point geostatistical simulation. In: Geostatistics Banff 2004 (eds. O. Leuangthong and C.V. Deutsch) 1: 245-254. Springer, Netherlands.
  • 32. Mallet, J.L. ed., 2002. Geomodeling. Applied Geostatistics Series. Oxford University Press.
  • 33. Mallet, J.L., 2004. Space-time mathematical framework for sedimentary geology. Mathematical Geology, 36: 1-32.
  • 34. Mastej,W.,2002. An application of Markov Chain analysis to studies of lithofacies sequences in the alluvial fans from the "Bełchatów" lignite deposit (Poland). Annales Societais Geologorum Poloniae, 72: 271-282.
  • 35. Namysłowska-Wilczyńska, B., 2006. Geostatystyka: teoria i zastosowania (in Polish). Oficyna Wydawnicza Politechniki Wrocławskiej.
  • 36. Olea,R.A.,1995.Fundamentals of semivariogram estimation, modeling, and usage. AAPG Computer Applications in Geology, 3: 27-36.
  • 37. Purkis, S., Vlaswinkel, B., Gracias, N., 2012. Vertical-to-lateral transitions among Cretaceous carbonate facies - a means to 3D framework construction via Markov analysis.Journal of Sedimentary Research, 82: 232-243.
  • 38. Ravenne, C., 2002. Sequence stratigraphy evolution since 1970. Comptes Rendus Palevol, 1: 415-438.
  • 39. Ravenne, C., Galli, A., Doligez, B., Beucher, H., Eschard, R., 2002. Quantification of facies relationships via proportion curves. In:GeostatisticsRio2000 (eds. A. Armstrong, C. Bettini, N. Champigny, A. Galli and A. Remacre): 19-39. Springer.
  • 40. Schwarzacher, W., 1969. The use of Markov Chains in the study of sedimentary structures. Mathematical Geology, 1: 17-39.
  • 41. Shannon, E.C., 1948. A mathematical theory of communication. Bell System Technical Journal, 27: 379-423.
  • 42. Stach A., 2009. Analiza struktury przestrzennej i czasoprzestrzennej maksymalnych opadów dobowych w Polsce w latach 1956-1980 (in Polish). Adam Mickiewicz University Press, Poznań. Seria Geografia: 85.
  • 43. Staňová, S., Soták, J., Hudec, N., 2009. Markov chain analysis of turbiditic facies and flow dynamics (Magura Zone, Outer Western Carpathians, NW Slovakia). Geologica Carpathica, 60: 295-305.
  • 44. Strebelle, S., 2002. Conditional simulation of complex geological structures using multiple-point statistics. Mathematical Geology, 34: 1-22.
  • 45. Strebelle,S.,LevyM.,2008.Usingmultiple-point statistics tobuild geologically realistic reservoir models: the MPS/FDM workfow. Geological Society Special Publications, 309: 67-74.
  • 46. Strebelle,S.,Thorne,J.A.,Harding,A.W.,Levy,M.,Xie,D.,2006. Method for making reservoir facies model utilizing a training image and geologically interpreted facies probability cube. United States Patent Application Publication. Pub. No.: US 2006/0041409A1.
  • 47. Strzelczyk, G., Danielewicz, B., 1990. Dokumentacja geologiczna w kategorii C2 złoża kruszywa naturalnego (piaski budowlane czwartorzędowe) wraz z określeniem występowania bursztynu w utworach trzeciorzędowych w rejonie Górka Lubartowska (in Polish). National Geological Archive. nr 484/92. Państwowy Instytut Geologiczny, Warszawa.
  • 48. Volpi,B.,Galli,A.,Ravenne,C.,1997. Vertical proportion curves:a qualitative and quantitative tool forreservoir characterization. In Memorias del I Congreso Latinoamericano de Sedimentologia, Sociedad. Venezolana de Geólogos: 351-358.
  • 49. Wędrowska, E., 2010. Wykorzystanie entropii Shannona i jej uogólnień do badania rozkładu prawdopodobieństwa zmiennej losowej dyskretnej (in Polish). Przegląd Statystyczny, 57: 39-53.
  • 50. Wellmann, J.F., Regenauer-Lieb, K., 2012. Uncertainties have a meaning: information entropy as a quality measure for 3-D geological models. Tectonophysics, 526-529: 207-216.
  • 51. Yarus, J.M., Chambers, R.L., Mauces, M., Shi, G., 2012. Facies simulation in practice: lithotype proportion mapping and plurigaussian simulation, a powerful combination. Ninth International Geostatistics Congress, Oslo, Norway.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-2cc7289f-3960-4b61-97ff-a91fc399471f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.