PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Creep and creep recovery under stress-controlled subloop loading in TiNi shape memory alloy

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Konferencja
Solid Mechanics Conference (38 ; 27-31.08.2012 ; Warsaw, Poland)
Języki publikacji
EN
Abstrakty
EN
If a shape memory alloy (SMA) is subjected to the subloop loading under the stress-controlled condition, creep and creep recovery can appear based on the martensitic transformation. In the design of SMA elements, these deformation properties are important since the deflection of SMA elements can change under constant load. The conditions for the progress of the martensitic transformation are discussed based on the kinetics of the martensitic transformation for the SMA. The creep deformation properties are investigated experimentally for TiNi SMA. The creep strain rate increases in proportion to the martensitic transformation strain; the creep recovery strain rate increases in proportion to the reverse transformation strain.
Rocznik
Strony
429--444
Opis fizyczny
Bibliogr. 18 poz., rys. kolor., wykr.
Twórcy
autor
  • Department of Mechanical Engineering Aichi Institute of Technology 1247 Yachigusa, Yakusa-cho, Toyota 470-0392, Japan
autor
  • Department of Mechanical Engineering Aichi Institute of Technology 1247 Yachigusa, Yakusa-cho, Toyota 470-0392, Japan
autor
  • Department of Mechanical Engineering Aichi Institute of Technology 1247 Yachigusa, Yakusa-cho, Toyota 470-0392, Japan
  • Institute of Fundamental Technological Research Polish Academy of Sciences Pawinskiego 5B 02-106 Warsaw, Poland
Bibliografia
  • 1. H. Funakubo, Shape Memory Alloys, Gordon and Breach Science Pub., New York, U.S.A., 1987.
  • 2. K. Otsuka, C.M. Wayman, Shape Memory Materials, Cambridge University Press, Cambridge, U.K., 1998.
  • 3. C. Cismasiu,Shape Memory Alloys, Sciyo, Rijeka, Croatia, 2010.
  • 4. K. Tanaka, S. Kobayashi,Y. Sato, Thermomechanics of transformation pseudoelasticity and shape memory effect in alloys, Inter. J. Plasticity, 2, 59–72, 1986.
  • 5. B. Raniecki, C. Lexcellent, K. Tanaka, Thermodynamic models of pseudoelastic behaviour of shape memory alloys, Arch. Mech., 44, 3, 261–284, 1992.
  • 6. K. Tanaka, F. Nishimura, H. Tobushi, Phenomenological analysis on subloop in shape memory alloys due to incomplete transformations, J. Intell. Mater. Syst. Struct., 5, 487–493, 1994.
  • 7. P.H. Lin, H. Tobushi, K. Tanaka, T. Hattori, M. Makita, Pseudoelastic behaviour of TiNi shape memory alloy subjected to strain variations, J. Intell. Mater. Syst. Struct., 5, 694–701, 1994.
  • 8. K. Tanaka, F. Nishimura, T. Hayashi, H. Tobushi. C. Lexcellent, Phenomenological analysis on subloops and cyclic behavior in shape memory alloys under mechanical and/or thermal loads, Mech. Mater., 19, 281–292, 1995.
  • 9. E.A. Pieczyska, H. Tobushi, W.K. Nowacki, S.P. Gadaj, T. Sakuragi, Subloop deformation behavior of TiNi shape memory alloy subjected to stress-controlled loadings, Mater. Trans., 48, 2679–2686, 2007.
  • 10. K. Takeda, H. Tobushi, E.A. Pieczyska, Transformation-induced creep and creep recovery of shape memory alloy, Materials, 5, 909–921, doi: 10.3390/ma5050909, 2012.
  • 11. K. Tanaka, A thermomechanical sketch of shape memory effect: one-dimensional tensile behavior, Res. Mechanica, 18, 251–263, 1986.
  • 12. E.A. Pieczyska, H. Tobushi, S.P. Gadaj, W.K. Nowacki, Superelastic deformation behaviors based on phase transformation bands in TiNi shape memory alloy, Mater. Trans., 47, 670–676, 2006
  • 13. Y.J. He, H. Yin, R.H. Zhou, Q.P. Sun, Ambient effect on damping peak of NiTi shape memory alloy, Mater. Lett., 64, 1483–1486, 2010.
  • 14. J.A. Shaw, S. Kyriakides, Thermomechanical aspects of NiTi, J. Mech. Phys. Solids, 43, 1243–1281, 1995.
  • 15. Y.J. He, Q.P. Sun, Rate-dependent domain spacing in a stretched NiTi strip, Inter. J. Solids Struct., 47, 2775–2783, 2010.
  • 16. H. Tobushi, R. Matsui, K. Takeda, E.A. Pieczyska, Mechanical Properties of Shape Memory Materials. Materials Science and Technologies, Mechanical Engineering Theory and Applications, NOVA Publishers, New York, 2013.
  • 17. E.A. Pieczyska, H. Tobushi, K. Kulasinski, Development of transformation bands in TiNi SMA for various stress and strain rates studied by a fast and sensitive infrared camera, Smart Mater. Struct. 22, 035007 (8 pp.), 2013.
  • 18. W.M. Huang, Transformation front in shape memory alloys, Mater. Sci. Eng., 392, 121–129, 2005.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-2cc5cf62-f6c6-4ce7-8f7c-8050f102a57f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.