PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Przegląd metod czyszczenia powierzchni podłoży SiC

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
EN
A review of SiC surface cleaning methods
Języki publikacji
PL
Abstrakty
PL
Zapewnienie wysokiego poziomu uzysku produkcyjnego w technologii półprzewodnikowej wymaga opracowania poszczególnych procesów technologicznych wytwarzania przyrządu oraz wysokiej jakości podłoża. Podstawowymi wskaźnikami jakości podłoży półprzewodnikowych jest gęstość określonego rodzaju defektów oraz poziom czystości powierzchni podłoży przed kolejnymi procesami. W niniejszym komunikacie dokonano przeglądu obecnego stanu wiedzy na temat metod przygotowania i czyszczenia powierzchni węglika krzemu.
EN
Fabrication of an efficient, reliable and durable semiconductor device requires not only the development of specific technological processes used during its production, but also a high quality substrate. The quality of the substrate can be determined by the level of contamination of their surfaces and the presence of defects. They can interfere with proper operation or shorten the life of the instruments. This article reviews the current state of knowledge on the methods of preparation and cleaning of silicon carbide surfaces.
Rocznik
Strony
154--157
Opis fizyczny
Bibliogr. 48 poz., tab.
Twórcy
  • Politechnika Warszawska, Instytut Mikroelektroniki i Optoelektroniki, ul. Koszykowa 75, 00-662 Warszawa
  • Politechnika Warszawska, Instytut Mikroelektroniki i Optoelektroniki, ul. Koszykowa 75, 00-662 Warszawa
  • Politechnika Warszawska, Instytut Mikroelektroniki i Optoelektroniki, ul. Koszykowa 75, 00-662 Warszawa
Bibliografia
  • [1] Monnoye, S., D. Turover, and P. Vicente. "Surface preparation techniques for SiC wafers." Silicon Carbide. Springer, Berlin, Heidelberg, (2004). 699-710.
  • [2] Anzalone, Ruggero, et al. "Hydrogen etching influence on 4HSiC homo-epitaxial layer for high power device." Materials Science Forum. Vol. 897. Trans Tech Publications, (2017).
  • [3] Dulot, Frédéric, et al. "Structure and morphology of concaveshaped surfaces on 6H-SiC (0 0 0 1) after H2 etching." Applied surface science 187.3-4 (2002): 319-325.
  • [4] Hartman, J. D., et al. "Characterization of hydrogen etched 6H- SiC (0001) substrates and subsequently grown AlN films." Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films 21.2 (2003): 394-400.
  • [5] Owman, Fredrik, et al. "Removal of polishing-induced damage from 6H-SiC (0001) substrates by hydrogen etching." Journal of crystal growth 167.1-2 (1996): 391-395.
  • [6] Wang, J. J., et al. "Low damage, highly anisotropic dry etching of SiC." 1998 Fourth International High Temperature Electronics Conference. HITEC (Cat. No. 98EX145). IEEE, (1998).
  • [7] Watanabe, Heiji, et al. "Surface Cleaning and Etching of 4HSiC (0001) Using High-Density Atmospheric Pressure Hydrogen Plasma." Journal of nanoscience and nanotechnology 11.4 (2011): 2802-2808.
  • [8] Jokubavicius, Valdas, Mikael Syväjärvi, and Rositsa Yakimova. "Silicon Carbide Surface Cleaning and Etching." Advancing Silicon Carbide Electronics Technology I: Metal Contacts to Silicon Carbide: Physics, Technology, Applications 37 (2018): 1.
  • [9] Islam, Md M., and K. Das. "Effects of surface/interface states on Schottky contacts for 4H-SiC." Proceedings of the Thirty- Seventh Southeastern Symposium on System Theory, 2005. SSST'05.. IEEE, (2005).
  • [10] Plank, N. O. V., et al. "The electrical characteristics of 4H-SiC schottky diodes after inductively coupled plasma etching." Journal of electronic materials 32.9 (2003): 964-971.
  • [11] Tournier, D., et al. "Impact of fine surface chemical-mechanical polishing on the manufacturing yield of 1200V SiC Schottky barrier diodes." Proceedings. ISPSD'05. The 17th International Symposium on Power Semiconductor Devices and ICs, 2005.. IEEE, (2005).
  • [12] Kern W., Puotinen D., "Cleaning Solutions Based on Hydrogen for Use in Silicon Semiconductor Technology“, R.C.A. Rev. 31 (1970) 187-206.
  • [13] Kern, Werner. "The evolution of silicon wafer cleaning technology." Journal of the Electrochemical Society 137.6 (1990): 1887-1892.
  • [14] Reinhardt, Karen, and Werner Kern, eds. Handbook of silicon wafer cleaning technology. William Andrew, (2018).
  • [15] Saddow, Stephen E. Silicon carbide biotechnology: a biocompatible semiconductor for advanced biomedical devices and applications. Elsevier, (2012).
  • [16] Nishi, Yoshio, and Robert Doering. Handbook of semiconductor manufacturing technology. CRC Press, 2007.
  • [17] King, Sean W., Robert J. Nemanich, and Robert F. Davisa. "Wet Chemical Processing of (0001) Si 6H‐SiC Hydrophobic and Hydrophilic Surfaces." Journal of the Electrochemical Society146.5 (1999): 1910-1917.
  • [18] Stambouli, V., et al. "Wettability study of SiC in correlation with XPS analysis." Materials Science Forum. Vol. 457. Trans Tech Publications, (2004).
  • [19] Socha, R. P., K. Laajalehto, and P. Nowak. "Influence of the surface properties of silicon carbide on the process of SiC particles codeposition with nickel." Colloids and Surfaces A: Physicochemical and Engineering Aspects 208.1-3 (2002): 267-275.
  • [20] King, Sean W., et al. "Ex situ and in situ methods for complete oxygen and non-carbidic carbon removal from (0001) Si 6HSiC surfaces." MRS Online Proceedings Library Archive 423 (1996).
  • [21] Madani, Mohammad, et al. "SiC cleaning method by use of dilute HCN aqueous solutions." Journal of The Electrochemical Society155.11 (2008): H895-H898.
  • [22] Hattori, N., et al. "Investigation of SiC clean surface and Ni/SiC interface using scanning tunneling microscopy." Applied surface science 216.1-4 (2003): 54-58.
  • [23] Afanas’ ev, V. V., et al. "Elimination of SiC/SiO2 interface states by preoxidation ultraviolet‐ozone cleaning." Applied physics letters 68.15 (1996): 2141-2143.
  • [24] Prudkovskiy, V. S., et al. "High robustness of epitaxial 4H-SiC graphene to oxidation processes." Journal of Physics: Conference Series. Vol. 1124. No. 8. IOP Publishing, (2018).
  • [25] Coletti, Camilla, et al. "Biocompatibility and wettability of crystalline SiC and Si surfaces." 2007 29th Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE, (2007).
  • [26] Harrell, William R., Jingyan Zhang, and Kelvin F. Poole. "Aluminum Schottky contacts to n-type 4H-SiC." Journal of Electronic Materials 31.10 (2002): 1090-1095.
  • [27] Lee, Dohyun, et al. "Improving the barrier height uniformity of 4H—SiC Schottky barrier diodes by nitric oxide post-oxidation annealing." IEEE Electron Device Letters 35.8 (2014): 868-870.
  • [28] Lodzinski, M., et al. "Characterization of MOS interfaces on protected and un-protected 4H-SiC surfaces." 2008 26th International Conference on Microelectronics. IEEE, (2008).
  • [29] Lohrmann, A., et al. "Activation and control of visible single defects in 4H-, 6H-, and 3C-SiC by oxidation." Applied Physics Letters 108.2 (2016): 021107.
  • [30] Shenoy, J. N., et al. "Characterization and optimization of the SiO 2/SiC metal-oxide semiconductor interface." Journal of electronic materials 24.4 (1995): 303-309.
  • [31] Tengeler, Sven, et al. "The (001) 3C SiC surface termination and band structure after common wet chemical etching procedures, stated by XPS, LEED, and HREELS." Applied Surface Science427 (2018): 480-485.
  • [32] Chanthaphan, Atthawut, et al. "Structure and Surface Morphology of Thermal SiO2 Grown on 4H-SiC by Metal- Enhanced Oxidation Using Barium." Materials Science Forum. Vol. 897. Trans Tech Publications, (2017).
  • [33] Liu, Bingbing, et al. "Chemical and electronic passivation of 4HSiC surface by hydrogen-nitrogen mixed plasma." Applied Physics Letters 104.20 (2014): 202101.
  • [34] Chen, Su Hua. "The Study of SiC Surface Cleaning By Hydrogen Plasma." Applied Mechanics and Materials. Vol. 473. Trans Tech Publications, (2014).
  • [35] Das, M. K., J. A. Cooper, and M. R. Melloch. "Effect of epilayer characteristics and processing conditions on the thermally oxidized SiO 2/SiC interface." Journal of electronic materials27.4 (1998): 353-357.
  • [36] Lo, T. C., and H. C. Huang. "Optical and electrical measurements of a-SiC: H/c-Si heterojunctions prepared by plasma enhanced chemical vapour deposition." Electronics Letters 28.15 (1992): 1423-1424.
  • [37] Zhang, Yuming, Yimen Zhang, and Xinjun Niu. "The study of Ni/4H-SiC SBD." 2001 6th International Conference on Solid- State and Integrated Circuit Technology. Proceedings (Cat. No. 01EX443). Vol. 2. IEEE, (2001).
  • [38] Losurdo, Maria, et al. "Study of the temperature-dependent interaction of 4H-SiC and 6H-SiC surfaces with atomic hydrogen." Applied physics letters 84.20 (2004): 4011-4013. PRZEGLĄD ELEKTROTECHNICZNY, ISSN 0033-2097, R. 95 NR 10/2019 157
  • [39] Bolen, Michael L., et al. "Graphene formation mechanisms on 4 H-SiC (0001)." Physical Review B 80.11 (2009): 115433.
  • [40] Anzalone, Ruggero, et al. "Hydrogen etching influence on 4HSiC homo-epitaxial layer for high power device." Materials Science Forum. Vol. 897. Trans Tech Publications, (2017).
  • [41] Owman, Fredrik, et al. "Removal of polishing-induced damage from 6H-SiC (0001) substrates by hydrogen etching." Journal of crystal growth 167.1-2 (1996): 391-395.
  • [42] Frewin, Christopher L., et al. "A comprehensive study of hydrogen etching on the major SiC polytypes and crystal orientations." Materials science forum. Vol. 615. Trans Tech Publications, (2009).
  • [43] Yoh, Kanji, Keita Konishi, and Hiroki Hibino. "Epitaxial graphene FETs with high on/off ratio grown on 4H-SiC." 2009 9th IEEE Conference on Nanotechnology (IEEE-NANO). IEEE, (2009).
  • [44] Suess, Manuela, et al. "Effect of pulsed laser irradiation on the SiC surface." International Journal of Applied Ceramic Technology 14.3 (2017): 313-322.
  • [45] Vanko, Gabriel, et al. "Laser ablation: A supporting technique to micromachining of SiC." The Ninth International Conference on Advanced Semiconductor Devices and Mircosystems. IEEE, (2012).
  • [46] Suga, Tadatomo, et al. "Direct bonding of SiC by the suface activated bonding method." 2014 International Conference on Electronics Packaging (ICEP). IEEE, (2014).
  • [47] Mu, Fengwen, et al. "Room-temperature wafer bonding of SiC- Si by modified surface activated bonding with sputtered Si nanolayer." Japanese Journal of Applied Physics 55.4S (2016): 04EC09.
  • [48] Xue, Qizhen, et al. "Two-step preparation of 6H-SiC (0001) surface for epitaxial growth of GaN thin film." Applied physics letters 74.17 (1999): 2468-2470.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-2cbfac39-4052-4013-845f-e679cc8c49da
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.