PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Microwave and spark plasma sintering of carbon nanotube and graphene reinforced aluminum matrix composite

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Graphene and carbon nanotube due to their outstanding mechanical performance were used as reinforcement in aluminum (Al) based composite through spark plasma sintering (SPS), microwave (MW) and conventional techniques. The initial compositions of Al-1 wt% CNT, Al-1 wt% GNP and Al-1 wt% CNT–1 wt% GNP were mixed by a high energy ultrasonic device and mixer mill to achieve homogenous dispersion. The SPS, MW and conventional processes were conducted at almost 450, 600 and 700 °C, respectively. The maximum relative density (99.7 ± 0.2% of theoretical density) and bending strength (337 ± 11 MPa) obtained by SPS, while maximum microhardness of 221 ± 11 Vickers achieved by microwave for Al-1 wt% CNT–1 wt% GNP hybrid composite. X-ray diffraction (XRD) examinations identified Al as the only dominant phase accompanied by very low intensity peaks of Al4C3. Field emission scanning electron microscopy (FESEM) micrographs demonstrated uniform distribution of GNP as well as CNT reinforcement in spark plasma sintered samples.
Rocznik
Strony
1042--1054
Opis fizyczny
Bibliogr. 51 poz., rys., wykr.
Twórcy
autor
  • Ceramic Department, Materials and Energy Research Center, Alborz, Iran
autor
  • Ceramic Department, Materials and Energy Research Center, Alborz, Iran
autor
  • Ceramic Department, Materials and Energy Research Center, Alborz, Iran
autor
  • Ceramic Department, Materials and Energy Research Center, Alborz, Iran
  • Carbon Nexus, Institute for Frontier Materials, Deakin University, Vic 3216, Australia
autor
  • Ceramic Department, Materials and Energy Research Center, Alborz, Iran
Bibliografia
  • [1] K. Shirvanimoghaddam, S.U. Hamim, M. Karbalaei Akbari, S. M. Fakhrhoseini, H. Khayyam, A.H. Pakseresht, E. Ghasali, M. Zabet, K.S. Munir, S. Jia, J.P. Davim, M. Naebe, Carbon fiber reinforced metal matrix composites: fabrication processes and properties, Compos. A Appl. Sci. Manuf. 92 (2017), http://dx.doi.org/10.1016/j.compositesa.2016.10.032.
  • [2] E. Ghasali, K. Shirvanimoghaddam, A.H. Pakseresht, M. Alizadeh, T. Ebadzadeh, Evaluation of microstructure and mechanical properties of Al-TaC composites prepared by spark plasma sintering process, J. Alloys Compd. 705 (2017) 283–289.
  • [3] J.M. Torralba, C.E. Da Costa, F. Velasco, P/M aluminum matrix composites: an overview, J. Mater. Process. Technol. 133 (2003) 203–206.
  • [4] E. Ghasali, A.H. Pakseresht, M. Agheli, A.H. Marzbanpour, T. Ebadzadeh, WC-Co particles reinforced aluminum matrix by conventional and microwave sintering, Mater. Res. 18 (2015) 1197–1202 , http://dx.doi.org/10.1590/1516-1439.027115.
  • [5] D.K. Das, P.C. Mishra, S. Singh, S. Pattanaik, Fabrication and heat treatment of ceramic-reinforced aluminium matrix composites-a review, Int. J. Mech. Mater. Eng. 9 (2014) 6.
  • [6] H. Majidian, E. Ghasali, T. Ebadzadeh, M. Razavi, C. Division, Effect of heating method on microstructure and mechanical properties of zircon reinforced aluminum composites, Mater. Res. 19 (2016) 1443–1448, http://dx.doi.org/10.1590/1980-5373-MR-2016-0390.
  • [7] N. Chawla, J.W. Jones, C. Andres, J.E. Allison, Effect of Sic volume fraction and particle size on the fatigue resistance of a 2080 Al/SiCp composite, Metall. Mater. Trans. A 29 (1998) 2843–2854.
  • [8] E. Ghasali, H. Nouranian, A. Rahbari, H. Majidian, M. Alizadeh, T. Ebadzadeh, Low temperature sintering of aluminum-zircon metal matrix composite prepared by spark plasma sintering, Mater. Res. 19 (2016) 1189–1192.
  • [9] S.R. Bakshi, D. Lahiri, A. Agarwal, Carbon nanotube reinforced metal matrix composites – a review, Int. Mater. Rev. 55 (2010) 41–64.
  • [10] N. Saheb, Z. Iqbal, A. Khalil, A.S. Hakeem, N. Al Aqeeli, T. Laoui, A. Al-Qutub, R. Kirchner, Spark plasma sintering of metals and metal matrix nanocomposites: a review, J. Nanomater. 2012 (2012) 18.
  • [11] E. Ghasali, R. Yazdani-rad, A. Rahbari, T. Ebadzadeh, Microwave sintering of aluminum-ZrB2 composite: focusing on microstructure and mechanical properties, Mater. Res. 19 (2016) 765–769, http://dx.doi.org/10.1590/1980-5373-MR-2015-0799.
  • [12] M.O. Bodunrin, K.K. Alaneme, L.H. Chown, Aluminium matrix hybrid composites: a review of reinforcement philosophies; mechanical, corrosion and tribological characteristics, J. Mater. Res. Technol. 4 (2015) 434–445.
  • [13] D. Singla, K. Amulya, Q. Murtaza, CNT reinforced aluminium matrix composite – a review, Mater. Today Proc. 2 (2015) 2886–2895.
  • [14] J. Liao, M.-J. Tan, A simple approach to prepare Al/CNT composite: Spread–Dispersion (SD) method, Mater. Lett. 65 (2011) 2742–2744.
  • [15] M.M. Abolhasani, K. Shirvanimoghaddam, M. Naebe, PVDF/ graphene composite nanofibers with enhanced piezoelectric performance for development of robust nanogenerators, Compos. Sci. Technol. 138 (2017) 49–56.
  • [16] K. Shirvanimoghaddam, M.M. Abolhasani, Q. Li, H. Khayyam, M. Naebe, Cheetah skin structure: a new approach for carbon-nano-patterning of carbon nanotubes, Compos. A Appl. Sci. Manuf. 95 (2017) 304–314.
  • [17] S.C. Tjong, Recent progress in the development and properties of novel metal matrix nanocomposites reinforced with carbon nanotubes and graphene nanosheets, Mater. Sci. Eng. R Rep. 74 (2013) 281–350.
  • [18] G. Yue, X.L. Cai, K.J. Wang, H.P. Sun, Y.G. Chen, Interface reaction of CNTs/Al composites fabricated by high energy ball milling, Adv. Mater. Res. Trans. Tech. Publ. (2013) 90–94.
  • [19] K. Morsi, A.M.K. Esawi, P. Borah, S. Lanka, A. Sayed, Characterization and spark plasma sintering of mechanically milled aluminum-carbon nanotube (CNT) composite powders, J. Compos. Mater. 44 (2010) 1991–2003.
  • [20] R. Pérez-Bustamante, I. Estrada-Guel, P. Amézaga-Madrid, M. Miki-Yoshida, J.M. Herrera-Ramírez, R. Martínez-Sánchez, Microstructural characterization of Al-MWCNT composites produced by mechanical milling and hot extrusion, J. Alloys Compd. 495 (2010) 399–402 , http://dx.doi.org/10.1016/j.jallcom.2009.10.099.
  • [21] L. Yan, Z. Tan, G. Ji, Z. Li, G. Fan, D. Schryvers, A. Shan, D. Zhang, A quantitative method to characterize the Al 4C 3-formed interfacial reaction: the case study of MWCNT/Al composites, Mater. Charact. 112 (2016) 213–218.
  • [22] A.V. Desai, M.A. Haque, Mechanics of the interface for carbon nanotube–polymer composites, Thin-Walled Struct. 43 (2005) 1787–1803.
  • [23] D.B. Miracle, S.L. Donaldson, S.D. Henry, C. Moosbrugger, G.J. Anton, B.R. Sanders, N. Hrivnak, C. Terman, J. Kinson, K. Muldoon, ASM Handbook, ASM International Materials Park, OH, USA, 2001.
  • [24] I. Alfonso, O. Navarro, J. Vargas, A. Beltrán, C. Aguilar, G. González, I.A. Figueroa, FEA evaluation of the Al4C3 formation effect on the Young's modulus of carbon nanotube reinforced aluminum matrix composites, Compos. Struct. 127 (2015) 420–425.
  • [25] T. Wang, M. Shozaki, M. Yamamoto, A. Kagawa, Synergy effect of reinforcement particle, fiber and matrix on wear resistance of hybrid metal matrix composite fabricated by low pressure infiltration process, Mater. Des. 66 (2015) 498–503.
  • [26] E. Ghasali, R. Yazdani-rad, K. Asadian, T. Ebadzadeh, Production of Al-SiC-TiC hybrid composites using pure and 1056 aluminum powders prepared through microwave and conventional heating methods, J. Alloys Compd. 690 (2017) 512–518.
  • [27] H.H. Kim, J.S.S. Babu, C.G. Kang, Hot extrusion of A356 aluminum metal matrix composite with carbon nanotube/Al2O3 hybrid reinforcement, Metall. Mater. Trans. A 45 (2014) 2636–2645.
  • [28] S.R. Bakshi, D. Lahiri, A. Agarwal, Carbon nanotube reinforced metal matrix composites – a review, Int. Mater. Rev. 55 (2010) 41–64 , http://dx.doi.org/10.1179/095066009X12572530170543.
  • [29] H.G.P. Kumar, M.A. Xavior, Graphene reinforced metal matrix composite (GRMMC): a review, Proc. Eng. 97 (2014) 1033–1040.
  • [30] Z. Li, G. Fan, Q. Guo, Z. Li, Y. Su, D. Zhang, Synergistic strengthening effect of graphene-carbon nanotube hybryd structure in aluminum matrix composites, Carbon N. Y. 95 (2015) 419–427.
  • [31] E. Ghasali, M. Alizadeh, M. Niazmand, T. Ebadzadeh, Fabrication of magnesium-boron carbide metal matrix composite by powder metallurgy route: comparison between microwave and spark plasma sintering, J. Alloys Compd. 697 (2017) 200–207 , http://dx.doi.org/10.1016/j.jallcom.2016.12.146.
  • [32] E. Ghasali, A.H. Pakseresht, M. Alizadeh, K. Shirvanimoghaddam, T. Ebadzadeh, Vanadium carbide reinforced aluminum matrix composite prepared by conventional, microwave and spark plasma sintering, J. Alloys Compd. 688 (2016) 527–533, http://dx.doi.org/10.1016/j.jallcom.2016.07.063.
  • [33] Z.A. Munir, U. Anselmi-Tamburini, M. Ohyanagi, The effect of electric field and pressure on the synthesis and consolidation of materials: a review of the spark plasma sintering method, J. Mater. Sci. 41 (2006) 763–777.
  • [34] H.H. Kim, J.S.S. Babu, C.G. Kang, Fabrication of A356 aluminum alloy matrix composite with CNTs/Al2O3 hybrid reinforcements, Mater. Sci. Eng. A 573 (2013) 92–99.
  • [35] S.M. Fatemi, M. Foroutan, Recent developments concerning the dispersion of carbon nanotubes in surfactant/polymer systems by MD simulation, J. Nanostruct. Chem. 6 (2016) 29–40.
  • [36] S.E. Shin, D.H. Bae, Strengthening behavior of chopped multiwalled carbon nanotube reinforced aluminum matrix composites, Mater. Charact. 83 (2013) 170–177.
  • [37] H. Kwon, M. Estili, K. Takagi, T. Miyazaki, A. Kawasaki, Combination of hot extrusion and spark plasma sintering for producing carbon nanotube reinforced aluminum matrix composites, Carbon N.Y. 47 (2009) 570–577.
  • [38] S.R. Bakshi, A.K. Keshri, V. Singh, S. Seal, A. Agarwal, Interface in carbon nanotube reinforced aluminum silikon composites: thermodynamic analysis and experimental verification, J. Alloys Compd. 481 (2009) 207–213.
  • [39] E. Ghasali, M. Alizadeh, A.H. Pakseresht, T. Ebadzadeh, Preparation of silicon carbide/carbon fiber composites through high-temperature spark plasma sintering, J. Asian Ceram. Soc. 5 (2017), http://dx.doi.org/10.1016/j.jascer.2017.10.004.
  • [40] N. Al-Aqeeli, Processing of CNTs reinforced Al-based nanocomposites using different consolidation techniques, J. Nanomater. 2013 (2013) 125.
  • [41] A.M.K. Esawi, K. Morsi, A. Sayed, M. Taher, S. Lanka, Effect of carbon nanotube (CNT) content on the mechanical properties of CNT-reinforced aluminium composites, Compos. Sci. Technol. 70 (2010) 2237–2241.
  • [42] L.-X. Pang, J.-S. Zhang, X.U. Jing, K.-N. Sun, Effect of adding carbon nanotubes on stress of Fe3Al intermetallics, Trans. Nonferrous Met. Soc. China 19 (2009) 1201–1205.
  • [43] G.M. Le, A. Godfrey, N. Hansen, Structure and strength of aluminum with sub-micrometer/micrometer grain size prepared by spark plasma sintering, Mater. Des. 49 (2013) 360–367.
  • [44] L. Ci, Z. Ryu, N.Y. Jin-Phillipp, M. Rühle, Investigation of the interfacial reaction between multi-walled carbon nanotubes and aluminum, Acta Mater. 54 (2006) 5367–5375.
  • [45] L.M. Tham, M. Gupta, L. Cheng, Effect of limited matrix–reinforcement interfacial reaction on enhancing the mechanical properties of aluminium–silicon carbide composites, Acta Mater. 49 (2001) 3243–3253.
  • [46] A. Bisht, M. Srivastava, R.M. Kumar, I. Lahiri, D. Lahiri, Strengthening mechanism in graphene nanoplatelets reinforced aluminum composite fabricated through spark plasma sintering, Mater. Sci. Eng. A 695 (2017) 20–28.
  • [47] M. Oghbaei, O. Mirzaee, Microwave versus conventional sintering: a review of fundamentals, advantages and applications, J. Alloys Compd. 494 (2010) 175–189.
  • [48] E. Ghasali, T. Ebadzadeh, M. Alizadeh, M. Razavi, Mechanical and microstructural properties of WC-based cermets: a comparative study on the effect of Ni and Mo binder phases, Ceram. Int. 44 (2018) 2283–2291 , http://dx.doi.org/10.1016/j.ceramint.2017.10.189.
  • [49] E. Ghasali, A. Fazili, M. Alizadeh, K. Shirvanimoghaddam, T. Ebadzadeh, Evaluation of microstructure and mechanical properties of Al-TiC metal matrix composite prepared by conventional, microwave and spark plasma sintering methods, Materials (Basel) 10 (2017) 1255, http://dx.doi.org/10.3390/ma10111255.
  • [50] H. Kwon, M. Saarna, S. Yoon, A. Weidenkaff, M. Leparoux, Effect of milling time on dual-nanoparticulate-reinforced aluminum alloy matrix composite materials, Mater. Sci. Eng. A 590 (2014) 338–345.
  • [51] E. Ghasali, Y. Palizdar, A. Jam, H. Rajaei, T. Ebadzadeh, Effect of Al and Mo addition on phase formation, mechanical and microstructure properties of spark plasma sintered iron alloy, Mater. Today Commun. 13 (2017) 221–231, http://dx.doi.org/10.1016/j.mtcomm.2017.10.005.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-2cbe60cc-6d4e-4d8e-a4b9-12807333a690
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.