PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Evaluating transmitters for quantifying respiratory airflow in the breathing mechanism

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Techniques for measuring fluid flow have been known since the 19th century. The first solutions based on the use of pressure only allowed relatively slow changes to be observed. It was not until measurement techniques based on the use of electronic components and the phenomenon of thermo-transfer, combined with a method enabling fast signal recording (A/C converters), that it became possible to analyse the flow of a medium (e.g. air) in detail. Although flow sensors based on measuring changes in resistance have been known for many years, new solutions are still being developed. This paper presents the results of a study using three sensors. Their response to laminar airflow was investigated for different velocities (1.2 - 2.6 m/s). The flow forcing was implemented using an axial fan and the signals were measured simultaneously for all the sensors tested. The results showed which sensors had the smallest dispersion of results (PAN and WA sensors) and confirmed that for the investigated velocity variations (0.14 m/s pitch) the results are unambiguously interpretable.. It should be noted that sensor research is related to the need to develop a device to measure flow as accurately as possible, while at the same time ensuring the comfort of the test person during the measurements. Therefore, the search was for a sensor that is small in size and at the same time resistant to damage and operation in a harsh humid environment.
Słowa kluczowe
Czasopismo
Rocznik
Strony
art. no. 2024105
Opis fizyczny
Bibliogr. 28 poz., rys., tab.
Twórcy
  • Department of Mechanics and Vibroacoustics, Faculty of Mechanical Engineering and Robotics, AGH University of Krakow, Poland
  • Department of Mechatronics, Faculty of Technical Sciences, University of Warmia and Mazury, 11 Oczapowskiego St., 10-710 Olsztyn, Poland
  • Department of Neurosurgery, School of Medicine, Collegium Medicum, University of Warmia and Mazury, 30 Warszawska St., 10-082 Olsztyn, Poland
  • Institute of Optoelectronics, Military University of Technology, 2 Kaliski st, 00-908 Warsaw, Poland
  • Department and Clinic of Otorhinolaryngology, Head and Neck Diseases, Collegium Medicum, University of Warmia and Mazury in Olsztyn, Warszawska St. 30, 10-082 Olsztyn, Poland
  • Weles Acoustics Sp. z o.o., 13 Przemysłowa St., 44-203 Rybnik, Poland
  • Weles Acoustics Sp. z o.o., 13 Przemysłowa St., 44-203 Rybnik, Poland
Bibliografia
  • 1. Zagrodny B, Wojnicz W, Ludwicki M, Awrejcewicz J. Could Thermal Imaging Supplement Surface Electromyography Measurements for Skeletal Muscles? IEEE Transactions on Instrumentation and Measurement 2021;70:1-10. https://doi.org/10.1109/TIM.2020.3023216.
  • 2. Kukwa A, Zając A, Barański R, Nitkiewicz S, Kukwa W, Zomkowska E, Rybak A. Anatomical and functional assessment of patency of the upper respiratory tract in selected respiratory disorders - Part 1. Metrology and Measurement Systems 2021; 28(4): 813-836. https://doi.org/10.24425/mms.2021.138538IST.
  • 3. Zając A, Kukwa A, Barańska R, Nitkiewicz S, Zomkowska E, Rybak A. Anatomical and functional assessment of patency of the upper respiratory tract in selected respiratory disorders - part 2. Metrology and Measurement Systems 2022; 29(3): 429-454. https://doi.org/10.24425/mms.2022.142273.
  • 4. Traczyk W, Trzebski A. Fizjologia człowieka z elementami fizjologii stosowanej i klinicznej, 3rd ed., PZWL, Warszawa, 2015.
  • 5. Konturek S, Brzozowski T, Chabowski A, Dembińska-Kieć A, Górski J, Gutkowski P, Mirecka P, Pawlik W, Sadowski B, Szczepańska-Sadowska E, Szlachcic A, Żołądź J. Fizjologia człowieka, Podręcznik dla studentów medycyny, 2nd ed; Elsevier Urban & Partner, Wrocław, 2013.
  • 6. Mikołajczyk J, Bielecki Z, Stacewicz T, Smulko J, Wojtas J, Szabra D, Lentka Ł, Prokopiuk A, Magryta P. Detection of gaseous compounds with different techniques. Metrology and Measurement Systems 2016;23:205. https://doi.org/10.1515/mms-2016-0026.
  • 7. Stacewicz T, Bielecki Z, Wojtas J, Magryta P, Mikolajczyk J, Szabra D. Detection of disease markers in human breath with laser absorption spectroscopy. Opto Electron Rev 2016;24(2). https://doi.org/10.1515/oere-2016-0011.
  • 8. Nitkiewicz S, Barański R, Galewski M, Zajączkiewicz H, Kukwa A, Zając A, Ejdys S, Artiemjew P. Requirements for Supporting Diagnostic Equipment of Respiration Process in Humans. Sensors 2021; 21(10): 3479. https://doi.org/10.3390/s21103479.
  • 9. Hutchinson J. On the capacity of the lungs, and on the respiratory functions, with a view of establishing a precise and easy method of detecting disease by the spirometer. Medico-Chirurgical Transactions 1846; 29:137-252. https://doi.org/10.1177/095952874602900113.
  • 10. Hayes D, Kraman SS. Review Article: The Physiologic Basis of Spirometry, 2009) 1717-1726.] [W.F. Miller, N. Wu, R.L. Johnson Jr., Convenient method of evaluating pulmonary ventilatory function with a single breath test, Anesthesiology. 1956;17: 480-493.
  • 11. de Mir Messa I, Sardón Prado O, Larramona H, Salcedo Posadas A, Villa Asensi JR, Grupo de Técnicas de la Sociedad Española de Neumología Pediátrica. [Body plethysmography (I): Standardisation and quality criteria]. Anales De Pediatria 2015;83(2):136.e1-7. https://doi.org/10.1016/j.anpedi.2014.10.029.
  • 12. Criée CP, Sorichter S, Smith HJ, Kardos P, Merget R, Heise D, Berdel D, Köhler D, Magnussen H, Marek W, Mitfessel H, Rasche K, Rolke M, Worth H, Jörres RA. Body plethysmography – Its principles and clinical use. Respir. Med 2011; 105: 959-971. https://doi.org/10.1016/j.rmed.2011.02.006.
  • 13. Goldman M, Smith H, Ulmer W. Whole-body plethysmography. R. Gosselink, H. Stam (Eds.), Lung Funct. Test. Eur. Respir. Monogr., 31st ed., European Respiratory Society, Wakefield, UK, 2005: 15-43.
  • 14. Jablonski I, Mroczka J. Reduction of a linear complex model for respiratory system during Airflow Interruption. Annual International Conference of the IEEE Engineering in Medicine and Biology Society. Annual International Conference 2010; 2010: 730-3. https://doi.org/10.1109/IEMBS.2010.5626288.
  • 15. Jabłoński I, Mroczka J. Computer-aided evaluation of a new interrupter algorithm in respiratory mechanics measurement. Biocybernetics and Biomedical Engineering 2006; 26(3): 33-47.
  • 16. Jabłoński I, Mroczka J. A station for the respiratory mechanics measurement by occlusion techniques. Metrology and Measurement Systems. 2007; 15: 229-240.
  • 17. Sydenham PH. Handbook of metrology, Vol. 2, Practical Basics (in polish), WKiŁ, Warszawa, 1990.
  • 18. LaNasa P.J, Loy E. Upp, Fluid Flow Measurement, A Practical Guide to Accurate Flow Measurement, 2nd ed., Elsevier, Oxford, 2002
  • 19. Unitary Analysis, Synthesis, and Classification of Flow Meters, Moțit, H.M., CRC Press.
  • 20. Melo RE, Popov TA, Solé D. Exhaled breath temperature, a new biomarker in asthma control: a pilot study. Jornal Brasileiro De Pneumologia: Publicacao Oficial Da Sociedade Brasileira De Pneumologia E Tisilogia 2010; 36(6): 693-9. https://doi.org/10.1590/s1806-37132010000600005.
  • 21. Popov TA, Dunev S, Kralimarkova TZ, Kraeva S, DuBuske LM. Evaluation of a simple, potentially individual device for exhaled breath temperature measurement. Respiratory Medicine 2007; 101(10): 2044-50. https://doi.org/10.1016/j.rmed.2007.06.005.
  • 22. García G, Bergna M, Uribe E, Yañez A, Soriano JB. Increased exhaled breath temperature in subjects with uncontrolled asthma. Int J Tuberc Lung Dis. 2013; 17(7): 969-972. https://doi.org/10.5588/ijtld.12.0657.
  • 23. Oto J, Imanaka H, Nishimura M. Clinical factors affecting inspired gas humidification and oral dryness during noninvasive ventilation. Journal of Critical Care 2011;26(5):535.e9-535.e15. https://doi.org/10.1016/j.jcrc.2010.10.005.
  • 24. IST AG Innovative Sensor Technology. Thermal gas flow sensor FS7 IST AG. [citation 2023.10.27]. https://www.ist-ag.com/en/products/thermal-gas-flow-sensor-fs7.
  • 25. Flow Demo Board FS5/ FS7 / OOL, Innovative Sensor Technology IST AG, Stegrütistrasse 14, 9642 EbnatKappel. https://www.ist-ag.com/en/products/fs7- evakit.
  • 26. Nitkiewicz S, Barański R, Kukwa A, Zając A. Respiratory disorders - measuring method and equipment. Metrol Meas Syst 2018. https://doi.org/10.24425/118157.
  • 27. Kacperek K. System for monitoring the upper respiratory tract, Krakow, AGH, 2022.
  • 28. Barański R, Galewski M, Nitkiewicz S. The study of Arduino Uno feasibility for DAQ purposes. Diagnostyka. 2019;20:33-48. https://doi.org/10.29354/diag/109174.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-2cbc6990-6701-4f12-9b15-936544834d1c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.