Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Identyfikatory
DOI
Warianty tytułu
Języki publikacji
Abstrakty
The crustal-scale shear-zones of the Bohemian Massif were recurrently active during the Late Paleozoic, as inferred from the depositional record of numerous penecontemporaneous basins distributed along NW–SE faults. This paper focuses on the correlation of sedimentary basins associated with Late Paleozoic reactivation of the NW–SE-trending Elbe Zone System, based on subsurface data from Permian outliers preserved along the Lusatian Fault in northern Bohemia. Comparison of the lithofacies development together with recently published geochronological data facilitates possible correlation to the Weißig and Döhlen basins, and Bohemian basins, respectively. Stratigraphic dating and mutual correlation of the Late Paleozoic basins within the Elbe Zone allow comparison of their development and subsequent demise as a result of polyphase tectonic evolution of the northern Bohemian Massif. The Late Mississippian–Middle Pennsylvanian (~330–310/305 Ma) late orogenic strike-slip tectonic movements were followed by extension related to orogenic collapse. This process was overtaken by intraplate extension by ~306/305 Ma at the latest. It has been suggested that the NW–SE faults (incl. Elbe Zone System) were reactivated in a strike-slipe regime during the Middle Pennsylvanian–early Permian (Moscovian–early Asselian; ~310–300/298 Ma), i.e., concurrently with the intra-plate extension. Further strike-slip reactivation of the NW–SE faults occurred during the early Permian (late Asselian–early Kungurian; ~297–283 Ma).
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
art. no. 42
Opis fizyczny
Bibliogr. 160 poz., fot., map., tab., wykr.
Twórcy
autor
- Czech Geological Survey, Klárov 3, Prague, 11800, Czech Republic
autor
- Czech Geological Survey, Klárov 3, Prague, 11800, Czech Republic
autor
- Charles University, Institute of Geology and Palaeontology, Faculty of Science, Albertov 6, Prague, 12800, Czech Republic
autor
- Czech Geological Survey, Klárov 3, Prague, 11800, Czech Republic
autor
- Czech Geological Survey, Klárov 3, Prague, 11800, Czech Republic
autor
- Saxon State Office for Environment, Agriculture and Geology, Halsbrücker Str. 31a, Freiberg, 09599, Germany
Bibliografia
- 1. Absolon, A., 1979. Permian conglomerates in the Elbe Valley near Děčín (in Czech). Geologický průzkum, 2, 68.
- 2. Adamovič, J., Coubal, M., 1999. Intrusive geometries and Cenozoic stress history of the northern part of the Bohemian Massif. Geolines, 9: 5-14.
- 3. Aehnelt, M., Hilse, U., Pudlo, D., Heide, K., Gaupp, R., 2021. On the origin of bleaching phenomena in red bed sediments of Triassic Buntsandstein deposits in Central Germany. Geochemistry, 81, 125736; https://doi.org/10.1016/j.chemer.2020.125736
- 4. Aleksandrowski, P., Kryza, R., Mazur, S., Żaba, J., 1997. Kinematic data on major Variscan strike-slip faults and shear zones in the Polish Sudetes, north east Bohemian Massif. Geological Magazine, 134: 727-739; https://doi.org/10.1017/S0016756897007590
- 5. Andreas, D., 1988. The structural dual character of the Rotliegendes in the Thuringian Forest and its surroundings. Zeitschrift für Geologische Wissenschaften, 16: 979-992.
- 6. Arthaud, F., Matte, P., 1977. Late Palaeozoic strike-slip faulting in southern Europe and northern Africa: Result of a right-lateral shear zone between the Appalachians and the Urals. GSA Bulletin, 88: 1305-1320; https://doi.org/10.1130/0016-7606(1977)88%3c1305:LPSFIS%3e2.0.CO;2
- 7. Awdankiewicz, M., 2022. Polyphase Permo-Carboniferous magmat ism adjacent to the Intra-Sudetic Fault: constraints from U-Pb SHRIMP zircon study of felsic subvolcanic intrusions in the Intra-Sudetic Basin, SW Poland. International Journal of Earth Sciences, 111: 2199-2224; https://doi.org/10.1007/s00531-022-02232-y
- 8. Bárta, O., Melichar, R., Černý, J., 2021. How many extensional stages marked the Variscan gravitational coliapse in the Bohemian Massif? Annales Societatis Geologorum Poloniae, 91: 121-136; https://doi.org/10.14241/asgp.2021.08
- 9. Barthel, M., 1976. Die Rotliegendflora Sachsens. Abhandlungen des Staatlichen Museums für Mineralogie und Geologie zu Dresden, 24: 1-190.
- 10. Barthel, M., Rößler, R., Weiß, H.J., 2001. Sächsische „Madensteine” - Irrtümer und Fortschritte. Geologica Saxonica, 46: 197-202.
- 11. Barthel, M. 2016. The Lower Permian (Rotliegend) flora of the Döhlen Formation. Geologica Saxonica, 61: 105-238.
- 12. Benek, R., 1989. Über jungpaläozoische Seitenverschiebungen in Mitteleuropa. Zeitschrift für Geologische Wissenschaften, 6: 559-568.
- 13. Białek, D., Kryza, R., Oberc-Dziedzic, T., Pin, C., 2014. Cambrian Zawidów granodiorites in the Cadomian Lusatian Massif (Central European Variscides): What do the SHRIMP zircon ages mean? Journal of Geosciences, 59: 313-326; https://doi.org/10.3190/jgeosci.179
- 14. Blecha, M., Martínek, K., Mihaljevič, M., 1999. Sedimentary and geochemical record of the ancient Kalná Lake, Lower Permian, Krkonoše Piedmont Basin, Czech Republic. Acta Universitatis Carolinae, Geologica, 43: 657-665.
- 15. Brandmayr, M., Dallmeyer, R.D., Handler, R., Wallbrecher, E., 1995. Conjugate shear zones in the southern Bohemian Massif (Austria): implications for Variscan and Alpine tectonothermal activity. Tectonophysics, 248: 97-116; https://doi.org/10.1016/0040-1951(95)00003-6
- 16. Brause, H., 1972. Geologische Übersichtskarte Bezirke Dresden, Karl-Marx-Stadt, Leipzig, 1:400,000. Zentrales Geologisches Institut, Berlin.
- 17. Carlisle, D., 1983. Concentration of uranium and vanadium in calcretes and gypcretes. Geological Society Special Publications, 11, 185-195; https://doi.org/10.1144/GSL.SP.1983.011.01.19
- 18. Cajz, V., Valečka, J., 2010. Tectonic setting of the Ohře/Eger Graben between the central part of the České středohoří Mts. and the Most Basin, a regional study. Journal of Geosciences, 55: 201-215; https://doi.org/10.3190/jgeosci.075
- 19. Cháb, J., Breiter, K., Fatka, O., Hladil, J., Kalvoda, J., Šimůnek, Z., Štorch, P., Vašíček, Z., Zajíc, J., Zapletal, J., 2010. Outline of the Geology of the Bohemian Massif: the Basement Rocks and their Carboniferous and Permian Cover. Czech Geological Survey, Prague.
- 20. Cháb, J., Stráník, Z., Eliáš, M., 2007. Geological map of the Czech Republic 1:500,000. Czech Geological Survey, Prague.
- 21. Chaloupský, J., 1970. The basement of the Cretaceous southwest of the Ještědské pohoří Mountains. Sborník geologických věd, Geologie, 18: 147-160.
- 22. Chaloupský, J., 1973. The basement of the Cret aceous and the Permo-Carboniferous of northern Bohemia. Geologische Rundschau, 62: 581-594.
- 23. Chrt, J., 1957. Final report on the mineral exploration “Lusatian Fault” (in Czech). Unpublished report. Czech Geological Survey.
- 24. Collinson, J.D., 1996. Alluvial sediments. In: Sedimentary Environments: Processes, Facies and Stratigraphy (ed. H.G.Reading): 37-82. Blackwell Science, London.
- 25. Coubal, M., Adamovič, J., Málek, J., Prouza, V., 2014. Architecture of thrust faults with alongstrike variations in fault-plane dip: Anatomy of the Lusatian Fault, Bohemian Massif. Journal of Geosciences, 59: 183-208; https://doi.org/10.3190/jgeosci.174
- 26. Coubal, M., Málek, J., Adamovič, J., Štěpančíková, P., 2015. Late Cretaceous and Cenozoic dynamics of the Bohemian Massif inferred from the Palaeostress history of the Lusatian Fault Belt. Journal of Geodynamics, 87: 26-49; https://doi.org/10.1016/jjog.2015.02.006
- 27. Danišík, M., Migoń, P., Kuhlemann, J., Evans, N.J., Dunkl, I., Frisch, W., 2010. Thermochronological constraints on the longterm erosional history of the Karkonosze Mts., Central Europe. Geomorphology, 117: 78-89; https://doi.org/10.1016Zj.geomorph.2009.11.010
- 28. Doornenbal, J.C., Stevenson, A.G., 2010. Petroleum Geological Atlas of the Southern Permian Basin Area. EAGE Publications, Houten.
- 29. Dörr, W., Zulauf, G., 2010. Elevator tectonics and orogenic collapse of a Tibetan-style plateau in the European Variscides: the role of the Bohemian shear zone. International Journal of Earth Sciences, 99: 299-325.
- 30. Ebert, H., 1934. Das Grundgebirge im Elbtale nördlich von Tetschen. Abhandlungen des Sächsischen Geologischen Landesamtes, 14: 1-78.
- 31. Edel, J.B., Weber, K., 1995. Cadomian terranes, wrench faulting and thrusting in the central Europe Variscides: geophysical and geological evidence. Geologische Rundschau, 84: 412-432; https://doi.org/10.1007/BF00260450
- 32. Edel, J.B., Schulmann, K., Lexa, O., Lardeaux, J.M., 2018. Late Palaeozoic palaeomagnetic and tectonic constraints for amalgamation of Pangea supercontinent in the European Variscan belt. Earth-Science Reviews, 177: 589-612; https://doi.org/10.1016/j.earscirev.2017.12.007
- 33. Eliáš, M., 1981. Facies and Palaeogeography of the Jurassic of the Bohemian Massif. Sborník geologických věd, Geologie, 35: 75-144.
- 34. Elter, F.M., Gaggero, L., Mantovani, F., Pandeli, E., Costamagna, L. G., 2020. The Atlas-East Variscan-Elbe shear system and its role in the formation of the pull-apart Late Palaeozoic basins. International Journal of Earth Sciences, 109: 739-760; https://doi.org/10.1007/s00531-020-01830-y
- 35. Fediuk, F., Losert, J., Röhlich, P., Šilar, J., 1958. Geological setting of area in the vicinity of the Lusatian Fault in Šluknov spur (in Czech). Rozpravy Československé akademie věd - řada matematických a přírodních věd, 68: 1-42.
- 36. Gast, R., Gundlach, T., 2006. Permian strike slip and extensional tectonics in Lower Saxony, Germany. Zeitschrift der Deutschen Gesellschaft für Geowissenschaften, 157: 41-56; https://doi.org/10.1127/1860-1804/2006/0157-0041
- 37. Gebhardt, U., 2024. Nichtmarine Karbonatgesteine - Ein Schlüssel zur Rekonstruktion kontinentaler Paläo-Environments. Mitteilungen zu Geologie und Bergwesen von Sachsen-Anhalt, 23: 18-54.
- 38. Gebhardt, U., Schneider, J.W., 1993. Palökologie und Paläobiogeographie „mariner“ Kalkalgen im kontinental-lakustrischen Niederhäslich-Kalk des intramontanen Döhlen-Beckens (Unterrotliegend, Assel, Elbe-Zone). Freiberger Forschungshefte, C, 450: 82-107.
- 39. Gebhardt, U., Lützner, H., Ehling, B.-C., Schneider, J.W., Voigt, S., Walter, H., 2018. Erläuterung zur Stratigraphischen Tabelle Deutschlands 2016 - Rotliegend Variante B. Zeitschrift der Deutschen Gesellschaft für Geowissenschaften, 169: 129-137; https://doi.org/10.1127/zdgg/2018/012
- 40. Heeremans, M., Timmerman, M.J., Kirstein, J.I., Faleide, J.I., 2004. New constraints on the tim i ng of late Carboniferous - early Permian volcanism in the central North Sea. Geological Society Special Publications, 223: 177-194; https://doi.org/10.1144/GSL.SP.2004.223.01.08
- 41. Henk, A., 1997. Gravitational orogenic collapse vs plate-boundary stresses: a numerical modelling approach to the Permo-Carboniferous evolution of Central Europe. Geologische Rundschau, 86: 39-55; https://doi.org/10.1007/s005310050120
- 42. Herrmann, O., Beck, R., 1897. Erläuterungen zur geologischen Karte von Sachsen im M. 1:25,000. Nr. 86. Blatt Hinterhermsdorf-Daubitz. Leipzig.
- 43. Hoffmann, N., 1990. Zur paläodynamischen Entwicklung des Präzechsteins in der Nordostdeutschen Senke. Veröffentlichungen der Niedersächsischen Akademie der Geowissenschaften, 4: 5-18.
- 44. Hofmann, M., Linnemann, U., Gerdes, A., Ullrich, B., Schauer, M., 2009. Timing of dextral strike-slip processes and basement exhumation in the Elbe Zone (Saxo-Thuringian Zone): the final pulse of the Variscan Orogeny in the Bohemian Massif con - strained by LA-SF-ICP-MS U-Pb zircon data. Geological Society Special Publications, 327: 197-214; https://doi.org/10.1144/SP327.10
- 45. Hofmann, M., Voigt, T., Bittner, L., Gärtner, A., Zieger, J., Linnemann, U., 2018. Reworked Middle Jurassic sandstones as a marker for Upper Cretaceous basin inversion in Central Europea-a case study for the U-Pb detrital zircon record of the Upper Cretaceous Schmilka section and their implication for the sedimentary cover of the Lausitz Block (Saxony, Germany). International Journal of Earth Sciences, 107: 913-932; https://doi.org/10.1007/s00531-017-1552-z
- 46. Hoffmann, U., Breitkreuz, C., Breiter, K., Sergeev, S., Stanek, K., Tichomirowa, M., 2013. Carboniferous-Permian volcanic evolution in Central Europe-U/Pb ages of volcanic rocks in Saxony (Germany) and northern Bohemia (Czech Republic). International Journal of Earth Sciences, 102: 73-99; https://doi.org/10.1007/s00531-012-0791-2
- 47. Holub, V., Tásler, R., 1974. Upper Palaeozoic and Lower Triassic underlying the Bohemian Cretaceous Basin (in Czech). In: Geology of the Bohemian Cretaceous Basin and its basement. (ed. M. Malkovský). ÚÚG/Academia, Prague.
- 48. Holub, V., Tásler, R., 1978. Filling of the Late Palaeozoic continental basins in the Bohemian Massif as a record of their palaeogeographical development. Geologische Rundschau, 67: 91-109; https://doi.org/10.1007/BF01803258
- 49. Holub, V., Chaloupský, J., Čadková, Z., Čech, S., Hercogová, J., Jetel, J., Knobloch, E., Rybářová, L., Schovánková, D., Slavík, J., Švábenická, L., Valečka, J., Valín, F., Vejlupek, M., 1984. Structural borehole Vf-1 Volfartice (in Czech). Unpublished final report. Czech Geological Survey, Prague.
- 50. Hoth, K., Wasternack, J., Berger, H.J., Breiter, K., Mlčoch, B., Schovánek, P., 1995. Geologische Karte Erzgebirge/Vogtland 1:100,000. Sächsisches Landesamt für Umwelt und Geologie, Freiberg.
- 51. Huhle, K., Lange, J.M., 2010. Über ein Vorkommen von Permosiles im Untergrund des Schlosses Wackerbarth in Radebeul (Sachsen). Geologica Saxonica, 56: 127-136.
- 52. Käßner, A., Stanek, K.P., Lapp, M., 2020. Post-Variscan tectonic and landscape evolution of the Elbe Fault Zone and the Lusatian Block based on apatite fission-track data and geomorphologic constraints. Geomorphology, 355; https://doi.org/10.1016/j.geomorph.2019.106860
- 53. Käßner, A., Tichomirowa, M., Lapp, M., Leonhardt, D., White - house, M., Gerdes, A., 2021. Two-phase late Palaeozoic magmatism (~ 313-312 and ~ 299-298 Ma) in the Lusatian Block and its relation to large scale NW striking fault zones: evidence from zircon U-Pb CA-ID-TIMS geochronology, bulk rock- and zircon chemistry. International Journal of Earth Sciences, 110: 2923-2953; https://doi.org/10.1007/s00531-021-02092-y
- 54. Käßner, A., Tichomirowa, M., Rößler, R., Görz, I., 2024. Zircon U-Pb CA-ID-TIMS constraints on the chronology of the Late Carboniferous-early Permian continental Döhlen Basin and its correlation with the Thuringian Forest Basin (Central and Eastern Germany). International Journal of Earth Sciences, 113: 1599-1618; https://doi.org/10.1007/s00531 -024-02464-0
- 55. Kemnitz, H., 2007. The Lausitz Greywackes, Saxo-Thuringia, Germany - Witness to the Cadomian Orogeny. GSA Special Papers, 423: 97-141; https://doi.org/10.1130/2007.2423(04)
- 56. Khadkikar, A.S., Merh, S.S., Malik, J.N., Chamyal, L.S., 1998. Calcretes in semi-arid alluvial systems: formative pathways and sinks. Sedimentary Geology, 116: 251-260; https://doi.org/10.1016/S0037-0738(97)00103-6
- 57. Kiersnowski, H., Buniak, A., 2006. Evolution of the Rotliegend Basin of northwestern Poland. Geological Quarterly, 50 (1): 119-138.
- 58. Klein, V., ed., 1971. Basic geological map 1:25,000, sheet M-33-41-B-D Chřibská. Unpublished map and explanatory notes (in Czech). Czech Geological Survey, Prague.
- 59. Klein, V., Opletal, M., 1971. Geological section WSW-NNE without Quaternary, map sheet M-33-41-B-d (Chřibská) (in Czech). Unpublished. Czech Geological Survey, Prague.
- 60. Kley, J., Voigt, T., 2008. Late Cretaceous intraplate thrust Í ng in Central Europe: effect of Africa-Iberia-Europe convergence, not Alpine collision. Geology, 36: 839-842; https://doi.org/10.1130/G24930A.1
- 61. Klomínský, J., Bělohradský, V., Fediuk, F., Schovánek, P., 2005. The Vratislavice fault - a new outcrop near Liberec in northern Bohemia (in Czech). Geoscience Research Reports, 38: 35-38.
- 62. Kolaříková, I., 2002. Geology and mineralogy of the Milířka valley near Jiřetín pod Jedlovou (in Czech). Geoscience Research Reports, 35: 39-41.
- 63. Kossmat, F., 1927. Gliederung des varistischen Gebirgsbaues. G.A. Kaufmann's Buchhandlung, Dresden.
- 64. Kowalski, A., 2017. Fault geometry and evidence of depocenter migration within a transtensional intra-basinal high - a case study from the Łączna Anticline (Intrasudetic Synclinorium, SW Poland). Geological Quarterly, 61 (4): 779-794; https://doi.org/10.7306/gq.1372
- 65. Kowalski, A., 2020. Multistage structural evolution of the end-Cretaceous-Cenozoic Wleń Graben (the Sudetes, NE Bohemian Massif) - a contribution to the post-Variscan tectonic history of SW Poland. Annales Societatis Geologorum Poloniae, 91: 37-66; https://doi.org/10.14241/asgp.2020.21
- 66. Kowalski, A., Pacanowski, G. 2024. Record of superimposed late and post Variscan regional scale tectonic events at the NE margin of the Bohemian Massif: structural evolution of the Kamionki Graben (SW Poland, Sudetes. In: 20th Jubilee Meeting of the Central European Tectonic Studies Groups CETEG 2024, 24-27.04.2024. Srebrna Góra, Poland. Abstract Volume & Field Trips Guide (eds. R. Sikora, M. Olkowicz and M. Adamuszek): 56. Polish Geological Society.
- 67. Kozdrój, W., Krentz, O., Opletal, M., 2001. Geological map and Comments on the Geological map Lausitz, Jizera, Karkonosze (without Cenozoic sediments) 1:100,000. Polish Geological Institute, Warsaw.
- 68. Krentz, O., Stanek, K., 2015. Die Lausitzer Überschiebung zwischen Meißen und Jeschken - neue Aspekte. Berichte der Naturforschenden Gesellschaft der Oberlausitz, 23: 123-137.
- 69. Lützner, H., 1988. Sedimentology and basin development of intramontane Rotliegend basins in Central Europe. Zeitschrift für Geologische Wissenschaften, 16: 845-864.
- 70. Machek, M., Soejono, I., Sláma, J., Žáčková, E., 2021. Timing and kinematics of the Variscan orogenic cycle at the Moldanubian periphery of the central Bohemian Massif. Journal of the Geological Society, 179,jgs2021-096; https://doi.org/10.1144/jgs2021-096
- 71. Machette, M.N., 1985. Calcic soils of the south-western United States. GSA Special Paper, 203: 1-21; https://doi.org/10.1130/SPE203-p1
- 72. Malkovský, M. 1977. Důležité zlomy platformního pokryvu severní části Českého masivu. Ústřední ústav geologický, Prague.
- 73. Malkovský, M., 1987. The Mesozoic and Tertiary basins of the Bohemian Massif and their evolution. Tectonophysics, 137: 31-42; https://doi.org/10.1016/0040-1951(87)90311 -8
- 74. Martínek, K., 2008. Climatic, tectonic and provenance record of the Permian non-marine deposits of the Krkonoše Piedmont Basin. Ph.D. thesis. Charles University, Prague; https://dspace.cuni.cz/handle/20.500.11956/19984
- 75. Martínek, K., Štolfová, K., 2009. Provenance study of Permian non-marine sandstones and conglomerates of the Krkonoše Piedmont Basin (Czech Republic): exotic marine limestone pebbles, heavy minerals and garnet composition. Bulletin of Geosciences, 84: 555-568; http://doi.org/10.3140/bull.geosci.1064
- 76. Martínek, K., Blecha, M., Daněk, V., Franců, J., Hladíková, J., Johnová, R., and Uličný, D., 2006. Record of palaeoenvironmental changes in a Lower Permian organic-rich lacustrine succession: Integrated sedimentological and geochemical study of the Rudník member, Krkonoše Piedmont Basin, Czech Republic. Palaeogeography, Palaeoclimatology, Palaeoecology, 230: 85-128; https://doi.org/10.1016Zj.palaeo.2005.07.009
- 77. Martinez Catalán, J.R., 2012. The Central Iberian arc, an orocline centered in the Iberian Massif and some implications for the Variscan belt. International Journal of Earth Sciences, 101: 1299-1314; https://doi.org/10.1007/s00531 -011 -0715-6
- 78. Mastalerz, K., Wojewoda, J., 1991. Geodynamic regime of the Sudetes as interpreted from contrasting palaeoenvironmental indicators: Lower Permian and Upper Cretaceous. Seminar proceeding, Bautzen.
- 79. Matte, P., 1986. Tectonics and plate tectonics model for the Variscan belt of Europe. Tectonophysics, 126: 329-374; https://doi.org/10.1016/0040-1951186j90237-4
- 80. Matte, P., Maluski, H., Rajlich, P., Franke, W., 1990. Terrane boundaries in the Bohemian Massif: Result of large-scale Variscan shearing. Tectonophysics, 177: 151-170; https://doi.org/10.1016/0040-1951(90)90279-H
- 81. Mattern, F., 1995a. Late Carboniferous to Lower Triassic shear sense reversals at strike-slip faults in eastern Bavaria. Zentralblatt für Geologie und Paläontologie, Teil I, 1993: 1471-1490.
- 82. Mattern, F., 1995b. The fault(s) of the “Fränkische Linie” (NE Bavaria), interpreted as a Rotliegend sinistral extensional strike-slip duplex. Zentralblatt für Geologie und Paläontologie, Teil I, 1993: 1491-1504.
- 83. Mattern, F., 1996. The Elbe zone at Dresden - A Late Palaeozoic pull-apart intruded shear zone. Zeitschrift der Deutschen Gesellschaft für Geowissenschaften, 147: 57-80; https://doi.org/10.1127/zdgg/147/1996/57
- 84. Mattern, F., 2001. Permo-Silesian movements between Baltica and Western Europe: tectonics and 'basin families'. Terra Nova, 13: 368-375; https://doi.org/10.1046/j. 1365-3121.2001.00368.x
- 85. Mazur, S., Aleksandrowski, P., Gągała, Ł., Krzywiec, P., Żaba, J., Gaidzik, K., Sikora, R., 2020. Late Palaeozoic strike-slip tectonics versus oroclinal bending at the SW outskirts of Baltica: case of the Variscan belt's eastern end in Poland. International Journal of Earth Sciences, 109: 1133-1160; https://doi.org/10.1007/s00531-019-01814-7
- 86. McCann, T., 1998. The Rotliegend of the NE German Basin: background and prospectivity. Petroleum Geoscience, 4: 17-27; https://doi.org/10.1144/petgeo.4.1.17
- 87. Miall, A.D., 1977. Lithofacies types and vertical profile models in braided river deposits: a summary. Geological Survey of Canada, Memoir, 5: 597-604.
- 88. Miall, A.D., 1996. The Geology of Fluvial Deposits: Sedimentary Facies, Basin Analysis and Petroleum Geology. Springer-Verlag, Heidelberg.
- 89. Mlčoch, B., Konopásek, J., 2010. Pre-Late Carboniferous geology along the contact of the Saxothuringian and Teplá-Barrandian zones in the area covered by younger sediments and volcanics (western Bohemian Massif, Czech Republic). Journal of Geosciences, 55: 81-94; http://doi.org/10.3190/jgeosci.068
- 90. Möbus, G., 1966. Die variscische Tektogenese in der Elbtalzone. Geologie, 15: 5-18.
- 91. Mrázová, Š., Tomanová Petrová, P., Krentz, O. (eds.), 2020. Geologie des Sächsisch-Böhmischen Kreidebecken. Czech Geological Survey, Prague.
- 92. Müller, B., Wächter, K., 1970. Beiträge zur Tektonik der Elbtalzone unter besonderer Berücksichtigung der Lausitzer Störung. Geodätische und geophysikalische Veröffentlichungen. Reihe III, 18: 1-52.
- 93. Nádaskay, R., Kochergina, Y.V., Čech, S., Švábenická, L., Valečka, J., Erban, V., Halodová, P., Čejková, B., 2019a. Integrated stratigraphy of an offshore succession influenced by intense siliciclastic supply Implications for Coniacian tectono-sedimentary evolution of the West Sudetic area (NW Bohemian Cretaceous Basin, Czech Republic). Cretaceous Research, 102: 127-159; https://doi.org/10.1016/j.cretres.2019.06.005
- 94. Nádaskay, R., Žák, J., Sláma, J., Sidorinová, T., Valečka, J., 2019b. Deciphering the Late Palaeozoic to Mesozoic tectono sedimentary evolution of the northern Bohemian Massif from detrital zircon geochronology and heavy mineral provenance. International Journal of Earth Sciences, 108: 2653-2681; https://doi.org/10.1007/s00531-019-01781-z
- 95. Nádaskay, R., Valečka, J., Voigt, T., 2024. One basin, threefold lithostratigraphy. Discussion of stratigraphic correlation of the Saxon-Bohemian Cretaceous Basin (Upper Cretaceous; Germany and Czechia). Zeitschrift der Deutschen Gesellschaft für Geowissenschaften, 175: 383-416; https://doi.org/10.1127/zdgg/2024/0402
- 96. Neumann, E.-R., Wilson, M., Heeremans, M., Spencer, E.-A., Obst, K., Timmerman, M. J., Kirstein, L., 2004. Carboniferous-Permian rifting and magmatism in southern Scandinavia, the North Sea and northern Germany: a review. Geological Society Special Publications, 223: 11-40; https://doi.org/10.1144/GSL.SP.2004.223.01.02
- 97. Niebuhr, B., 2018. Kreidesandsteine auf der Lausitz (Sachsen): Hinweise zu Paläogeographie und Inversionstektonik. Freiberger Forschungshefte, C, psf, 24: 51-78.
- 98. Opletal, M., ed., 2001. Explanatory notes to the geological map of the Czech Republic 1:25,000, sheets 02-223 Mikulášovice and 02-214 Dolní Poustevna (in Czech). Czech Geological Survey, Prague.
- 99. Opluštil, S., Pešek, J., 1998. Stratigraphy, palaeoclimatology and palaeogeography of the Late Palaeozoic continental deposits in the Czech Republic. Geodiversitas, 20: 597-620.
- 100. Opluštil, S., Šimůnek, Z., Zajic, J., Mencl, V., 2013. Climatic and biotic changes around the Carboniferous/Permian boundary recorded in the continental basins of the Czech Republic. International Journal of Coal Geology, 119: 114-151; https://doi.org/10.1016/j.coal.2013.07.014
- 101. Opluštil, S., Schmitz, M., Cleal, C.J., Martinek, K., 2016a. A review of the Middle-Late Pennsylvanian west European regional substages and floral biozones, and their correlation to the Geological Time Scale based on new U-Pb ages. Earth-Science Reviews, 154: 301-335; https://doi.org/10.1016/j.earscirev.2016.01.004
- 102. Opluštil, S., Schmitz, M., Kachlik, V., Štamberg, S., 2016b. Re-assesment of lithostratigraphy, biostratigraphy and volcanic activity of the Late Palaeozoic Intra-Sudetic, Krkonoše-Piedmont and Mnichovo Hradiště basins (Czech Republic) based on new U-Pb CA-ID-TIMS ages. Bulletin of Geosciences, 91: 399-432; https://doi.org/10.3140/bull.geosci.1603
- 103. Opluštil, S., Jirásek, J., Schmitz, M., Matýsek, D. 2017. Biotic changes around the radioisotopically constrained Carboniferous-Permian boundary in the Boskovice Basin (Czech Republic). Bulletin of Geosciences, 92: 95-122; https://doi.org/10.3140/bull.geosci.1638
- 104. Pešek, J., ed., 2001. Geology and deposits of the Upper Palaeozoic limnic basins of the Upper Palaeozoic basins of the Czech Republic (in Czech). Czech Geological Survey, Prague.
- 105. Pietzsch, K., 1917. Das Elbtalschiefergebiet südwestlich von Pirna. Zeitschrift der Deutschen Gesellschaft für Geowissenschaften, 69: 177-286.
- 106. Pietzsch, K., 1963. Geologie von Sachsen (Bezirke Dresden, Karl-Marx-Stadt und Leipzig). Deutscher Verlag für Wissenschaft, Berlin.
- 107. Pitra, P., Burg, J.P., Schulmann, K., Ledru, P., 1994. Late orogenic extension in the Bohemian Massif: petrostructural evidence in the Hlinsko region. Geodinamica Acta, 7: 15-30; https://doi.org/10.1080/09853111.1994.11105256
- 108. Pitra, P., Burg, J.P., Guiraud, M., 1999. Late Variscan strike-slip tectonics between the Tepla-Barrandian and Moldanubian terranes (Czech Bohemian Massif): Petrostructural evidence. Journal of the Geological Society, 156: 1003-1020; https://doi.org/10.1144/gsjgs.156.5.1003
- 109. Praeg, D., 2004. Diachronous Variscan late-orogenic collapse as a response to multiple detachments: a view from the internides in France to the foreland in the Irish Sea. Geological Society Special Publications, 223: 89-138; https://doi.org/10.1144/GSL.SP.2004.223.01.05
- 110. Prouza, V., Šimůnek, Z., Zajíc, J., 1997. A new locality of the Rudník Horizon (Autunian) in the Mnichovo Hradiště Basin at Prosec pod Ještědem (in Czech). Geoscience Research Rer ports, 1996: 37-38.
- 111. Rajchl, M., Uličný, D., Grygar, R., Mach, K., 2009. Evolution of basin architecture in an incipient continental rift: the Cenozoic Most Basin, Eger Graben (Central Europe). Basin Research, 21: 269-294; https://doi.org/10.1111/j.1365-2117.2008.00393.x
- 112. Ramezani, J., Schmitz, M.D., Davydov, V.I., Bowring, S.A., Snyder, W.S., Northrup, C.J., 2007. High-precision U-Pb zircon age constraints on the Carboniferous-Permian boundary in the southern Urals stratotype. Earth and Planetary Science Letters, 256: 244-257; https://doi.org/10.1016Zj.epsl.2007.01.032
- 113. Reichel, W., 1985. Schichtenstörungen im unterpermischen Döhlener Becken bei Dresden. Ein Beitrag zur lithofaziellen und tektonischen Entwicklung eines intramontanen vulkanotektonischen Beckens. Hallesches Jahrbuch für Geowissenschaften, 10: 21-34.
- 114. Reichel, W., 2012. Rotliegend im Weßig-Becken nordöstlich von Dresden. Schriftenreihe der Deutschen Gesellschaft für GeoWissenschaften, 61: 633-645; https://doi.org/10.1127/sdgg/61/2012/633
- 115. Reichel, W., Schneider, J.W., 2012. Rotliegend im Döhlen-Becken. Schriftenreihe der Deutschen Gesellschaft für Geowissenschaften, 61: 589-625; https://doi.org/10.1127/sdgg/61/2012/589
- 116. Roscher, M., Schneider, J.W., 2006. Permo-Carboniferous climate: Early Pennsylvanian to Late Permian climate development of central Europe in a regional and global context. Geological Society Special Publications, 265: 95-136; https://doi.org/10.1144/GSL.SP.2006.265.01.05
- 117. Scheck, M., Bayer, U., Otto, V., Lamarche, J., Banka, D., Pharaoh, T., 2002. The Elbe Fault System in north central Europe - a basement-controlled zone of crustal weakness. Tectonophysics, 360: 281-299; https://doi.org/10.1016/S0040-1951(02)00357-8
- 118. Schneider, J.W., 1994. Environment, biotas and taphonomy of the Lower Permian lacustrine Niederhäslich limestone, Döhlen basin, Germany. Earth and Environmental Science Transactions of the Royal Society of Edinburgh, 84: 453-464; https://doi.org/10.1017/S0263593300006258
- 119. Schenider, J.W., Hoffmann, U., 2001. Jungpaläozoikum der Döhlener Senke. In: Geologische Karte des Freistaates Sachsen 1:25,000, Erläuterungen zu Blatt 4948 Dresden, 4. neu bearb. (eds. W. Alexowsky, J.W. Schneider, K.-A. Tröger and L. Wolf). Sächsisches Landesamt für Umwelt und Geologie.
- 120. Schneider, J.W., Reichel, W., 1989. Chondrichthyer-Eikapseln aus dem Rotliegenden (Unterperm) Mitteleuropas - Schlußfolgerungen zur Paläobiologie paläozoischer Süßwasserhaie. Freiberger Forschungshefte, C, 436: 58-69.
- 121. Schneider, J.W., Romer, R.L., 2010. The Late Variscan Molasses (Late Carboniferous to Late Permian) of the Saxo-Thuringian Zone. In: Pre-Mesozoic geology of Saxo-Thuringia - From the Cadomian Active Margin to the Variscan Orogen (eds U. Linnemann and R.L. Romer): 323-346. Schweizerbarth, Stuttgart.
- 122. Schneider, J.W., Lucas, S.G., Scholze, F., Voigt, S., Marchetti, L., Klein, H., Opluštil, S., Werneburg, R., Golubev, V.K., Barrick, J.E., Nemyrovska, T., Ronchi, A., Day, M.O., Silantiev, V.V., Rößler, R., Saber, H., Linnemann, U., Zharinova, V., Shen, S.Z., 2020. Late Palaeozoic-early Mesozoic continental biostratigraphy - Links to the Standard Global Chronostratigraphic Scale. Palaeoworld, 29: 186-238; https://doi.org/10.1016/j.palwor.2019.09.001
- 123. Schöpfer, K., Nádaskay, R., Martínek, K., 2022. Evaluation of climatic and tecionic imprints in fluvial successions of an early Permian depositional system (Asselian Vrchlabí Fm., Krkonoše Piedmont Basin, Czech Republic). Journal of Sedimentary Research, 92: 275-303; https://doi.org/10.2110/jsr.2020.137
- 124. Schröder, B., 1988. Outline of the Permo-Carboniferous basins at the western margin of the Bohemian Massif. Zeitschrift für Geologische Wissenschaften, 16: 993-1001.
- 125. Schröder, B., Ahrendt, H., Peterek, A., Wemmer, K., 1997. Post-Variscan sedimentary record of the SW margin of the Bohemian massif: a review. Gondwana Research, 86: 178-184; https://doi.org/10.1007/s005310050129
- 126. Sedlák, J., Gnojek, I., Zabadal, S., Farbisz, J., Cwojdzinski, S., Scheibe, R., 2007. Geological interpretation of a gravity low in the central part of the Lugian Unit (Czech Republic, Germany and Poland). Journal of Geosciences, 52: 181-197; https://doi.org/10.3190/jgeosci.012
- 127. Solecki, A., 1994. Tectonics of the North Sudetic Synclinorium. Acta Universitatis Wratislaviensis, 1618, Prace Geologiczno-Mineralogiczne, 65: 1-38.
- 128. Solecki, A., 2011. Structural development of the epi-Variscan cover in the North Sudetic Synclinorium area. In: Mezozoik i kenozoik Dolnego Śląska (eds. A. Żelażniewicz, J. Wojewoda and W. Ciężkowski): 19-36. WIND, Wrocław.
- 129. Stárková, M., Čáp, P., 2017. Lower Permian lacustrine limestones in the western part of the Krkonoše Piedmont Basin, locality Tatobity (Rotliegend) (in Czech). Geoscience Research Reports, 50: 137-140.
- 130. Tietz, O., Büchner, J., 2015. The landscape evolution of the Lausitz Block since the Palaeozoic - with special emphasis to the neovolcanic edifices in the Lausitz Volcanic Field (Eastern Germany). Zeitschrift der Deutschen Gesellschaft für Geowissenschaften, 166: 125-147; https://doi.org/10.1127/zdgg/2015/0031
- 131. Tomek, F., Vacek, F., Žák, J., Petronis, M.S., Verner, K., Foucher, M.S., 2019. Polykinematic foreland basins initiated during orthogonal convergence and terminated by orogen-oblique strike-slip faulting: An example from the northeastern Variscan belt. Tectonophysics, 766: 379-397; https://doi.org/10.1016/j.tecto.2019.05.023
- 132. Tomek, F., Opluštil, S., Svojtka, M., Špillar, V., Rapprich, V., Míková, J., 2021. Altenberg-Teplice Caldera sourced Westphalian fall tuffs in the central and western Bohemian Carboniferous basins (eastern Variscan belt). International Geology Review, 64: 441-468; https://doi.org/10.1080/00206814.2020.1858357
- 133. Uličný, D., Martínek, K., Grygar, R., 2002. Syndepositional geometry and post-depositional deformation of the Krkonoše Piedmont Basin: a preliminary model. Geolines, 14: 101-102.
- 134. Uličný, D., Laurin, J., Čech, S., 2009a. Controls on clastic sequence geometries in a shallow-marine, transtensional basin: the Bohemian Cretaceous Basin, Czech Republic. Sedimentology, 56: 1077-1114; https://doi.org/10.1111/j.1365-3091.2008.01021.x
- 135. Uličný, D., Špičáková, L., Grygar, R., Svobodová, M., Čech, S., Laurin, J., 2009b. Palaeodrainage systems at the basal unconformity of the Bohemian Cretaceous Basin: roles of inherited fault systems and basement lithology during the onset of basin filling. Bulletin of Geosciences, 84: 577-610; https://doi.org/10.3140/bull.geoscL1128
- 136. Valečka, J., ed., 2001. Geological map of the Czech Republic. Sheet 02-24 Nový Bor. Scale 1:50,000 (in Czech). Czech Geological Survey, Prague.
- 137. Valečka, J., ed., 2006. Geological map of the Czech Republic 1:25,000, sheet 02-242 Dolní Podluží, with explanatory notes (in Czech). Czech Geological Survey. Prague.
- 138. Valečka, J., 2019. Jurassic pebbles in the Cretaceous sandstones of the Bohemian Basin as a possible tool for reconstruction of the Late Jurassic and Late Cretaceous palaeogeography. Volumina Jurassica, 17: 17-38; https://doi.org/10.7306/VJ.17.2
- 139. van Wees, J.D., Stephenson, R.A., Ziegler, P.A., Bayer, U., McCann, T., Dadlez, R., Gaupp, R., Narkiewicz, M., Bitzer, F., Scheck, M., 2000. On the origin of the Southern Permian Basin, Central Europe. Marine and Petroleum Geology, 17: 43-59; https://doi.org/10.1016/S0264-8172(99)00052-5
- 140. Vejlupek, M., Novák, J., Schovánková, D., 1986. Geologie permokarbonu ceskokamenické a kravařské pánve (in Czech). Sborník geologických věd, Geologie, 41: 127-165.
- 141. Verner, K., Buriánek, D., Vrána, S., Vondrovic, L., Pertoldová, J., Hanžl, P., Nahodilová, R., 2009. Tectonometamorphic features of geological units along the northern periphery of the Moldanubian Zone (Bohemian Massif). Journal of Geosciences, 54: 87-100; https://doi.org/10.3190/jgeosci.046
- 142. Voigt, T., 1994. Faziesentwicklung und Ablagerungssequenzen am Rand eines Epikontinentalmeeres - die Sedimentationsgeschichte der Sächsischen Kreide. Ph.D. thesis, TU Bergakademie Freiberg; https://katalog.ub.tu-freiberg.de/Record/0-1122201060
- 143. Voigt, T., 2009. Die Lausitzer-Riesengebirgs-Antiklinalzone als kreidezeitliche inversionsstruktur: geologische Hinweise aus den umgebenden Kreidebecken. Zeitschrift für Geologische Wissenschaften, 37: 15-39.
- 144. Voigt, T., Kley, J., Voigt, S., 2021. Dawn and dusk of Late Cretaceous basin inversion in central Europe. Solid Earth, 12: 1443-1471; https://doi.org/10.5194/se-12-1443-2021
- 145. Vondrovic, L., Verner, K., Buriánek, D., Halodová, P., Míková, J., 2011. Emplacement, structural and P-T evolution of the ~346 Ma Miřetín Pluton (eastern Teplá-Barrandian Zone, Bohemian Massif): implications for regional transpressional tectonics. Journal of Geosciences, 56: 343-357; https://doi.org/10.3190/jgeosci.109
- 146. Wagner, R.H., 1984. Megafloral zones of the Carboniferous. In: Neuvieme Congres International de Stratigraphie et de Geologie du Carbonifere, Washington and Urbana, May 17-26, Vol. 2 (ed M. Gordon): 109-134. Southern Illinois University Press, Carbondale and Edwardsville.
- 147. Wagner, R.H., Álvarez-Vázquez, C., 2010. The Carboniferous floras of the Iberian Peninsula: A synthesis with geological connotations. Review of Palaeobotany and Palynology, 162: 239-324; https://doi.org/10.1016/j.revpalbo.2010.06.005
- 148. Wenzel, T., Mertz, D., Oberhänsli, R., Becker, T., Renne, P.R., 1997. Age, geodynamic setting, and mantle enrichment processes of a K-rich intrusion from the Meissen massif (northern Bohemian massif) and implications for related occurrences from the mid-European Hercynian. Geologische Rundschau, 86: 556-570; https://doi.org/10.1007/s005310050163
- 149. Wojewoda, J., 2007. Perm basenu Nachodu (in Polish). Sedimentologica, 1: 85-99.
- 150. Wojewoda, J., Mastalerz, K., 1989. Climate evolution, allo- and autocyclity of sedimentation: an example from the Permo-Carboniferous continental deposits of the Sudetes (in Polish with English summary). Przegląd Geologiczny, 37: 173-80.
- 151. Zachariáš, J., Trubač, J., 2014. Intrusive and deformation history of the Ševětín Pluton, Moldanubian Batholith: record of polyphase tectonic evolution of the Blanice Graben, Bohemian Massif. Journal of Geosciences, 59: 441-456; https://doi.org/10.3190/jgeosci.175
- 152. Zagórska, U., Kowalska, S., Sláma, S., Dziubińska, B., Wolański, K., 2020. Detrital zircon provenance of Carboniferous sandstones of the Variscan Externides (SW Poland) - record of the eastern Variscides exhumation. International Journal of Earth Sciences, 109: 2169-2187; https://doi.org/10.1007/s00531-020-01894-w
- 153. Žák, J., Verner, K., Holub, F.V., Kabele, P., Chlupáčová, M., Halodová, P., 2012. Magmatic to solid state fabrics in syntectonic granitoids recording early Carboniferous orogenic collapse in the Bohemian Massif. Journal of Structural Geology, 36: 27-42; https://doi.org/10.1016/jjsg.2011.12.011
- 154. Žák, J., Verner, K., Sláma, J., Kachlík, V., Chlupáčová, M., 2013. Multi stage magma emplacement and progressive strain accumulation in the shallow-level Krkonoše-Jizera plutonic complex, Bohemian Massif. Tectonics, 32: 1493-1512; https://doi.org/10.1002/tect.20088
- 155. Žák, J., Svojtka, M., Opluštil, S., 2018. Topographic inversion and changes in the sediment routing systems in the Variscan orogenic belt as revealed by detrital zircon and monazite U-Pb geochronology in post-collisional continental basins. Sedimentary Geology, 377: 63-81; https://doi.org/10.1016Zj.sedgeo.2018.09.008
- 156. Zeh, A., Brätz, H., 2004. Timing of Upper Carboniferous-Permian horst-basin formation and magmatism in the NW Thuringian Forest, central Germany: A review. Geological Society Special Publications, 223: 319-334; https://doi.org/10.1144/GSL.SP.2004.223.01.14
- 157. Zieger, J., Linnemann, U., Hofmann, M., Gärtner, A., Marko, L., Gerdes, A., 2018. A new U-Pb LA-ICP-MS age of the Rumburk granite (Lausitz Block, Saxo-Thuringian Zone): constraints for a magmatic event in the Upper Cambrian. International Journal of Earth Sciences, 107: 933-953; https://doi.org/10.1007/s00531-017-1511-8
- 158. Zieger, J., Bittner, L., Gärtner, A., Hofmann, M., Gerdes, A., Marko, L., Linnemann, U., 2019. U-Pb ages of magmatic and detrital zircon of the Döhlen Basin: geological history of a Permian strike-slip basin in the Elbe Zone (Germany). International Journal of Earth Sciences, 108: 887-910; https://doi.org/10.1007/s00531-019-01683-0
- 159. Ziegler, P.A., 1975. Geologic evolution of North Sea and its tectonic framework. AAPG Bulletin, 59: 1073-1097; https://doi.org/10.1306/83D91F2E-16C7-11D7-8645000102C1 865D
- 160. Zulauf, G., 1994. Ductile normal faulting along the West Bohemian shear zone (Moldanubian/Teplá-Barrandian boundary): evidence for late Variscan extensional collapse in the Variscan Internides. Geologische Rundschau, 83: 276-292; https://doi.org/10.1007/9783-662-38521-0_6
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-2cb9dada-5042-4498-9eb4-f8b0ef160d54
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.