PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Plasma welding of aluminum in an oxygen-free argon atmosphere

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Plasma welding is characterized by a high concentration of energy, which allows for high welding speed and leads to less distortion and residual stresses compared to conventional welding processes. Due to the local and controlled heat input, the process is suitable for sheet metal from ≈ 0.1 mm (micro plasma) up to ≈ 10 mm. In the case of aluminum and its alloys, the natural aluminum oxide layer on the metal surface limits the productivity of the plasma welding process. The electrically isolating and thermally insulating Al2O3 layer has a significantly higher melting point compared to the aluminum (Tm(Al2O3) = 2072 °C vs. Tm(Al) = 660 °C). The oxide layer hinders the formation of a stable arc and can even impede the joining formation. In order to remove the oxide layer and to produce quality welds with a DC process, it is necessary to weld with reverse polarity to use the principle of cathodic surface cleaning. However, this leads to increased electrode wear and increased penetration depth, which is not always desirable. In the study presented, the use of silane to reduce the oxygen content in the welding atmosphere as well as to remove the natural aluminum oxide layer on the metal surface was investigated. As previous studies have shown that the use of silane-doped plasma-gases is suitable for removing the superficial oxide layer on aluminum components, high-quality welded joints were expected. Quality welds with sufficient dilution were achieved using a transferred arc silane-doped helium plasma. In contrast, welding with an argon-silane mixture led to excessive pores formation. Additionally challenges to stabilize the arc process were identified and ramifications with respect to process optimization are discussed.
Słowa kluczowe
Rocznik
Strony
5--18
Opis fizyczny
Bibliogr. 29 poz., rys., tab.
Twórcy
autor
  • Leibniz Universität Hannover, Institut für Werkstoffkunde (Materials Science), An der Universität 2, 30823 Garbsen, Germany
  • Leibniz Universität Hannover, Institut für Werkstoffkunde (Materials Science), An der Universität 2, 30823 Garbsen, Germany
autor
  • Leibniz Universität Hannover, Institut für Werkstoffkunde (Materials Science), An der Universität 2, 30823 Garbsen, Germany
autor
  • Leibniz Universität Hannover, Institut für Werkstoffkunde (Materials Science), An der Universität 2, 30823 Garbsen, Germany
  • Leibniz Universität Hannover, Institut für Werkstoffkunde (Materials Science), An der Universität 2, 30823 Garbsen, Germany
  • Leibniz Universität Hannover, Institut für Werkstoffkunde (Materials Science), An der Universität 2, 30823 Garbsen, Germany
Bibliografia
  • 1. Li J.G., Wang S.Q.: Distortion caused by residual stresses in machining aeronautical aluminumalloy parts: recent advances. Int J Adv Manuf Technol 89 (2017), 997–1012.
  • 2. Yang Y., Li M., Li K.R.: Comparison and analysis of main effect elements of machining distortion for aluminum alloy and titanium alloy aircraft monolithic component. Int J Adv Manuf Technol 70 (2014), 1803–1811.
  • 3. Zhang ZH, Dong S.Y., Wang Y.J., Xu B.S., Fang J.X., He P.: Study on microstructures and mechanical properties of super narrow gap joints of thick and high strength aluminum alloy plates welded by fiber laser. Int J Adv Manuf Technol 82 (2016), 99–109.
  • 4. Hakem M., Lebaili S., Mathieu S., Miroud D., Lebaili A., Cheniti B.: Effect of microstructure and precipitation phenomena on the mechanical behavior of AA6061-T6 aluminum alloy weld. Int J Adv Manuf Technol 102 (2019), 2907–2918.
  • 5. Zhang, H.; Chen, Y.; Luo, A. A.: A novel aluminum surface treatment for improved bonding in magnesium/aluminum bimetallic castings. Scr. Mater. 86 (2014), 52-55.
  • 6. Wang X.H., Lu H., Xing L.H., Zhang H.L.: Discussion on process design of aluminum alloy arc welding joints. Welding & Joining 10 (2017), 25–30.
  • 7. Li Y., Zou W., Lee B., Babkin A., Chang Y.: Research progress of aluminum alloy welding technology. Int J Adv Manuf Technol 109 (2020), 1207–1218.
  • 8. Olabode M., Kah P., Martikainen J.: Aluminium alloys welding processes: Challenges, joint types and process selection. J. Eng. Manuf 227 (2013), 1129-1137.
  • 9. Mathers G: The welding of aluminium and its alloys. Woodhead Publishing (2002), Cambridge, England.
  • 10. Torres M. R., McClure, J. C., Nunes, A. C., Gurevitch, A. C.: Gas contamination effects in variable polarity plasma arc welded aluminum. Weld. J. 71 (1992), 123-131.
  • 11. Modenesi P. J., Apolinário E. R., Pereira I. M.: TIG welding with single-component fluxes. J Mater Proc Technol 99 (2000), 260-265.
  • 12. Lucas W., Howse D.: Activating flux - increasing the performance and productivity of the TIG and plasma processes, Weld Met Fab 64 (1996), 11-17.
  • 13. Shchitsyn Y. D., Belinin D. S., Shchitsyn V. Y., Neulybin S. D.: Plasma welding of aluminum alloys with the use of two direct arcs on reverse-polarity current. Metallurgist 59 (2015), 1234- 1237.
  • 14. Han Y.Q., Du M.H., Yao Q.H., Hong H.T., Wu Y.J.: The signal examination in variable polarity plasma arc welding of aluminum alloy. IEEE Third International Conference on Measuring Technology & Mechatronics Automation (2011), 941-944.
  • 15. Han Y.Q., Pang S.G., Yao Q.H., Shi Z.J.: Heat source characteristics of aluminum alloy LB-VPPA composite welding. Hanjie Xuebao/Trans China Weld Inst 36 (2015), 23–26.
  • 16. Moeller F., Thomy C.: Interaction effects between laser beam and plasma arc in hybrid welding of aluminum. Phys Procedia 41 (2013), 81-89.
  • 17. Chun L., Han Y., Chen F., Honh H.: Pulse variable polarity plasma arc welding technology of aluminum alloy. Hanjie Xuebao/Trans China Weld Inst (2016), 29-32.
  • 18. Kim J. D., Kim Y. H., Oh J. S.: Diagnostics of laser-induced plasma in welding of aluminum alloy. Key Eng Mater (2004), 1671-1676.
  • 19. Dreher M., Schuster H., Manig N., Gebhardt C., Schnick M.: Alles eine Frage der Polung - Fokussiertes WIG-Schweißen von Aluminium und säure- und rostbeständigen Stählen. DVS Berichte 382 (2022), 483-489.
  • 20. Pang Q., Pang T., McClure J. C., Nunes A. C.: Workpiece Cleaning During Variable Polarity Plasma Arc Welding of Aluminum. J Eng Ind 116 (1994), 463-466.
  • 21. ISO 3529-1:2019-07 Vacuum technology - Vocabulary - Part 1: General terms (2019).
  • 22. Bach F. W., Möhwald K., Holländer U.: Physico-chemical aspects of surface activation during fluxless brazing in Shielding-Gas Furnaces. Key Eng Mater 438 (2010), 73–80.
  • 23. Klett J., Bongartz B., Viebranz V. B., Kramer D., Hao C., Maier H. J., Hassel T.: Investigations into flux-free plasma brazing of aluminum in a local XHV-atmosphere. Materials 15 (2022), 8292.
  • 24. Rodriguez Diaz M., Szafarska M., Gustus R., Möhwald, K., Maier, H. J.: Oxide Free Wire Arc Sprayed Coatings - An Avenue to Enhanced Adhesive Tensile Strength. Metals 12 (2022), 684.
  • 25. Aman W., Nothdurft S., Hermsdorf J., Kaierle S., Szafarska M., Gustus R., Overmeyer L.: Laser beam brazing of aluminum alloys in XHV-adequate atmosphere with surface deoxidation by ns-pulsed laser radiation. J. Laser Appl 34 (2022), 022005.
  • 26. Jeurgens L. P. H., Sloof W. G., Tichelaar F. D., Mittemeijer E. J.: Growth kinetics and mechanisms of aluminum-oxide films formed by thermal oxidation of aluminum. J Appl Phys 92 (2002), 1649–1656.
  • 27. Jittavisuttiwong, P., Poopat, B.: Effect of Helium Addition in Argon Shielding Gas on Metal Transfer Behavior in Gas Metal Arc Welding of Aluminum. Key Eng Mater 545 (2013), 219-224.
  • 28. Geng, S., Jiang, P., Shao, X., Guo, L. Mi, G., Wu, H., Wang, C., Han, C., Gao, S.: Identification of nucleation mechanism in laser welds of aluminum alloy. Appl Phys A 125 (2019), 396.
  • 29. Orłowska, M., Pixner, F., Majchrowicz, K., Enzinger, N., Olejnik, L., Lewandowska, M.: Application of Electron Beam Welding Technique for Joining Ultrafine-Grained Aluminum Plates. Metall Mater Trans A 53 (2022), 18–24.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-2cb7ac12-4632-4715-8be5-3e43608f7d1c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.