PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Oxide crystals on the surface of porous indium phosphide

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: f this paper is to is to establish the patterns of oxide formation on the surface of indium phosphide during electrochemical etching of mono-InP. Design/methodology/approach: A porous surface was formed with the anode electrolytic etching. Morphology of the surface was studied with the help of scanning electron microscope JSM-6490. The analysis of chemical composition of porous surface of samples was also performed. Findings: It was shown that during the electrochemical etching of indium phosphide, oxide films and crystallites form on the surface. It has been established that crystalline oxides are formed mainly on the surface of n-type indium phosphide. Continuous oxide films are predominantly formed on the surface of p-InP. Research limitations/implications: The research was carried out for indium phosphide samples synthesized in the solution of hydrofluoric acid, though, carrying out of similar experiments for crystalline oxides on the surface of porous indium phosphide obtained in other conditions, is necessary. Practical implications: The study of oxide crystals on the surface of porous indium phosphide has great practical importance since it is the reproducibility of experimental results that is the main problem of modern materials science, the more nanoengineering. Oxides can significantly affect the properties of materials. On the one hand, oxides significantly affect the recombination properties of materials, this can impair the operation of semiconductor devices. On the other hand, oxide films can serve as a passivating coating for the surface of a porous semiconductor. Such an oxide property will be useful for the practical application of nanostructured indium phosphide. Therefore, questions of the conditions for the formation of semiconductor intrinsic oxides, their structure, and chemical composition, and also the effect of oxides on the physical and technical characteristics of materials are important. Originality/value: The patterns of oxide formation on the surface of indium phosphide during electrochemical etching are investigated in this work. It is shown for the first time that the structure of an oxide depends on the orientation of the surface of the semiconductor. It was shown that continuous oxide films are formed on the surface of p-InP, and oxide crystalline clusters are formed on the surface of n-InP.
Rocznik
Strony
49--56
Opis fizyczny
Bibliogr. 42 poz.
Twórcy
  • Vocational Education Department, Berdyansk State Pedagogical University, 71100, Berdyansk, Shmidt str., 4, Ukraine
  • Rector, Berdyansk State Pedagogical University, 71100, Berdyansk, Shmidt str., 4, Ukraine
  • Vocational Education Department, Berdyansk State Pedagogical University, 71100, Berdyansk, Shmidt str., 4, Ukraine
Bibliografia
  • [1] A. Merda, M. Sroka, K. Klimaszewska, G. Golanski, Microstructure and mechanical properties of the Sanicro 25 steel after ageing, Journal of Achievements in Materials and Manufacturing Engineering 91/1 (2018) 5-11, DOI: https://doi.org/10.5604/ 01.3001. 0012.9651.
  • [2] W. Matysiak, T. Tanski, W. Smok, Electrospinning of PAN and composite PAN-GO nanofibers, Journal of Achievements in Materials and Manufacturing Engineering 91/1 (2018) 18-26, DOI: https://doi.org/10.5604/01.3001.0012.9653.
  • [3] S. Vambol, I. Bogdanov, V. Vambol, Y. Suchikova, O. Kondratenko, O. Hurenko, S. Onishchenko, Research into regularities of pore formation on the surface of semiconductors, Eastem-European Journal of Enterprise Technologies 3/5(87) (2017) 37-44, DOI: https://doi.org/10.15587/1729-4061.2017. 104039.
  • [4] A. Benor, New insights into the oxidation rate and formation of porous structures on silicon, Materials Science and Engineering: B 228 (2018) 183-189, DOI: https://doi.Org/10.1016/j.mseb.2017.ll.015.
  • [5] Y.A. Suchikova, V.V. Kidalov, A.A. Konovalenko, G. A. Sukach, Blue shift of photoluminescence spectrum of porous InP, ECS Transactions 25/24 (2010) 59-64, DOI: https://doi.org/10.1149/ 1.3316113.
  • [6] M. Khalil, Advanced nanomaterials in oil and gas industry: design, application and challenges, Applied Energy 191 (2017) 287-310, DOI: https://doi.org/ 10.1016/j.apenergy.2017.01.074.
  • [7] A. Kania, K. Cesarz-Andraczke, J. Odrobinski, Application of FMEA method for an analysis of selected production process, Journal of Achievements in Materials and Manufacturing Engineering 91/1 (2018) 34-40, DOI: https://doi.org/10.5604/01.3001. 0012.9655.
  • [8] P. Snopinski, Microstructure and strengthening model of Al-3%Mg alloy in a heat treated state subjected to ECAP process, Journal of Achievements in Materials and Manufacturing Engineering 90/1 (2018) 5-10, DOI: https://doi.org/10.5604/01.3001.0012.7970.
  • [9] S. Vambol, I. Bogdanov, V. Vambol, Y. Suchikova, T. Nestorenko, S. Onyschenko, Formation of filamentary structures of oxide on the surface of monocrystalline gallium arsenide, Journal of Nano- and Electronic Physics 9/6 (2017) 06016-1-06016-4, D01:https://doi.org/10.21272/jnep.9(6).06016.
  • [10] Y.A. Sychikova, V.V. Kidalov, G.A. Sukach, Dependence of the threshold voltage in indium- phosphide pore formation on the electrolyte composition, Journal of Surface Investigation 7 (2013) 626-630, DOI: https://doi.org/10.1134/S1027451013030130.
  • [11] H.E. Hussein, H. Amari, J.V. Macpherson, Electro-chemical Synthesis of Nanoporous Platinum Nanoparticles Using Laser Pulse Heating: Application to Methanol Oxidation, ACS Catalysis 7/10 (2017) 7388-7398, DOI: https://doi.org/10.1021/acscatal. 7b02701.
  • [12] T. Haga, K. Miyazaki, Semi-continuous caster for plate, Journal of Achievements in Materials and Manufacturing Engineering 84/2 (2017) 58-67, DOI: https://doi.org/10.5604/01.3001.0010.7782.
  • [13] H. Foil, J. Carstensen, S. Frey, Porous and nanoporous semiconductors and emerging applications, Journal of Nanomaterials (2006) 1-10, DOI: https://doi.org/ 10.1155/JNM/2006/91635.
  • [14] I. Tiginyanu, E. Monaico, V. Sergentu, A. Tiron, V. Ursaki, Metallized porous GaP templates for electronic and photonic applications, ECS Journal of Solid State Science and Technology 4/3 (2015) P57- P62, DOI: https://doi.org/10.1149/2.0011503jss.
  • [15] E. Monaico, G. Colibaba, D. Nedeoglo, K. Nielsch, Porosification of III-V and II-VI semiconductor compounds, Journal of Nanoelectronics and Opto-electronics 9/2 (2014) 307-311, DOI: https://doi.org/10.1166/jno.2014.1581.
  • [16] Y.O. Suchikova, Sulfide Passivation of Indium Phosphide Porous Surfaces, Journal of Nano- and Electronic Physics 9/1 (2017) 1006-1-1006-6, DOI: https://doi.org/10.21272/jnep.9(l).01006.
  • [17] S. Vambol, I. Bogdanov, V. Vambol, Y. Suchikova, H. Lopatina, N. Tsybuliak, Research into effect of electrochemical etching conditions on the morphology of porous gallium arsenide, Eastern- European Journal of Eenterprise Technologies 6/5(90) (2017) 22-31, DOI: https://doi.org/10.15587/1729- 4061.2017.118725.
  • [18] T. Tharsika, Co-synthesis of Zn0/Sn02 mixed nanowires via a single-step carbothermal reduction method, Ceramics International 40/3 (2014) 5039-5042, DOI: https://doi.Org/10.1016/j.ceramint. 2013. 08.142.
  • [19] Jo Jung-Ho, Photostability enhancement of InP/ZnS quantum dots enabled by ln203 overcoating, Journal of Alloys and Compounds 647 (2015) 6-13, DOI: https://doi.Org/10.1016/j.jallcom.2015.05.245.
  • [20] N.N. Tretyakov, Surface morphology, composition, and structure of nanofilms grown on InP in the presence of V2O5, Inorganic Materials 51/7 (2015) 655-660, DOI: https://doi.org/10.1134/S002016851507016X.
  • [21] Y. Robach, Passivation of InP using In (PO3) 3-condensed phosphates: From oxide growth properties to metal-insulator-semiconductor field- effect-transistor devices, Journal of Applied Physics 71/6 (1992) 2981-2992, DOI: https://doi.org/10.1063/1.351002.
  • [22] N. Du, H. Zhang, B.D. Chen, X.Y. Ma, Z.H. Liu, J.B. Wu, D.R. Yang, Porous Indium Oxide Nanotubes: Layer-by-Layer Assembly on Carbon-Nanotube Templates and Application for Room-Temperature NH3 Gas Sensors, Advanced Materials 19/12 (2007) 1641-1645, DOI: https://doi.org/10.1002/adma.200602128.
  • [23] G. Korotcenkov, V. Brinzari, B.K. Cho, Thin Film Sn02 and In203 Ozone Sensor Design: The Film Parameters Selection, Applied Mechanics and Materials 799-800 (2015) 910-914, DOI: https://doi.org/10.4028/www.scientific.net/AMM.799- 800.910.
  • [24] K. Ranjith Ramachandran, Low temperature atomic layer deposition of crystalline In203 films, The Journal of Physical Chemistry 119/21 (2015) 11786-11791, DOI: https://doi.org/10.1021/acs.jpcc.5b03255.
  • [25] A.S. Zatulovskyi, V.O. Shcheretskyi, A.O. Shcheretskyi, Thermal stability of nanoscale oxides and carbides of W and Zr in Cu-Al-Fe alloy, Journal of Achievements in Materials and Manufacturing Engineering 90/2 (2018) 49-57, DOI: https://doi.org/ 10.5604/01.3001.0012.8383.
  • [26] A. Paradecka, K. Lukaszkowicz, Tribological study of low friction DLC:Ti and M0S2 thin films, Journal of Achievements in Materials and Manufacturing Engineering 89/1 (2018) 13-18, DOI: https://doi.org/ 10.5604/01.3001.0012.6667.
  • [27] P.T. Iswanto, H. Akhyar, A. Faqihudin, Effect of shot peening on microstructure, hardness, and corrosion resistance of AISI 316L, Journal of Achievements in Materials and Manufacturing Engineering 89/1 (2018) 19-26, DOI: https://doi.org/10.5604/01.3001. 0012.6668.
  • [28] C.R. Ocier, N.A. Krueger, W. Zhou, P.V. Braun, Tunable Visibly Transparent Optics Derived from Porous Silicon, ACS Photonics 4/4 (2017) 909-914, DOI: https://doi.org/10.1021/acsphotonics.6b01001.
  • [29] E. Monaico, I. Tiginyanu, O. Volciuc, T. Mehrtens, A. Rosenauer, J. Gutowski, K. Nielsch, Formation of InP nanomembranes and nanowires under fast anodic etching of bulk substrates, Electrochemistry Communications 47 (2014) 29-32, DOI: https://doi.org/ 10.1016/j.elecom.2014.07.015.
  • [30] S. Shukla, M.A. Oturan, Dye removal using electrochemistry and semiconductor oxide nanotubes, Environmental Chemistry Letters 13/2 (2015) 157-172, DOI: https://doi.org/10.1007/sl0311-015-0501-y.
  • [31] N. Ma, Y. Chen, S. Zhao, J. Li, B. Shan, J. Sun, Preparation of super-hydrophobic surface on Al-Mg alloy substrate by electrochemical etching, Surface Engineering 35/5 (2018) 1-9, DOI: https://doi.org/ 10.1080/02670844.2017.1421883.
  • [32] Y.A. Bioud, A. Boucherif, A. Belarouci, E. Paradis, D. Drouin, R. Ares, Chemical Composition of Nanoporous Layer Formed by Electrochemical Etching of p-Type GaAs, Nanoscale Research Letters 11/1 (2016) Article Number: 446, DOI:
  • https://doi.org/10.1186/sll671-016-1642-z.
  • [33] X. Qi, X. Fang, D. Zhu, Investigation of electro-chemical micromachining of tungsten microtools, International Journal of Refractory Metals and Hard Materials 71 (2018) 307-314, DOI: https://doi.org/10.1016/j.ijrmhm.2017.11.045.
  • [34] V.P. Ulin, S.G. Konnikov, Electrochemical pore formation mechanism in III-V crystals (Part I), Semi-conductors 41/7 (2007) 832-844, DOI: https://doi.org/ 10.1134/sl063782607070111.
  • [35] D.M. Rowe (Ed.), Thermoelectrics handbook: macro to nano, CRC Press, Boca Raton, 2006, DOI: https://doi.org/10.1201/9781420038903.
  • [36] D. Tan, H.E. Lim, F. Wang, N.B. Mohamed, S. Mouri, W. Zhang, K. Matsuda, Anisotropic optical and electronic properties of two-dimensional layered germanium sulfide, Nano Research 10/2 (2017) 546-555, DOI: https://doi.org/10.1007/sl2274-016- 1312-6.
  • [37] R.K. Ramachandran, Low temperature atomic layer deposition of crystalline In203 films, The Journal of Physical Chemistry C 119/21 (2015) 11786-11791, DOI: https://doi.org/10.1021/acs.jpcc.5b03255.
  • [38] A. Bouhdjer, Correlation between the structural, morphological, optical, and electrical properties of ln203 thin films obtained by an ultrasonic spray CVD process, Journal of Semiconductors 36/8 (2015) 082002, DOI: https://doi.org/10.1088/1674-4926/36/ 8/082002.
  • [39] A.S. Lazarenko, Model of Formation of Nano-Sized Whiskers Out of Channels of the Triple Junctions of Grain Boundaries of Polycrystal, Journal of Nano- and Electronic Physics 3/4 (2011) 59.
  • [40] Y.A. Suchikova, V.V. Kidalov, G.A. Sukach, Influence of dislocations on the process of pore formation in n-InP (111) single crystals, Semiconductors 45/1 (2011) 121-124, DOI: https://doi.org/10.1134/S1063782611010192.
  • [41] H. Mammar, A. Benmansour, F. Kerroumi, Adjustment of the Band Gap Energy According to Nanosemiconductors Sizes for some Cubic Semiconductors of IV, III-V and II-VI Groups, Journal of Surface Science and Technology 34/1-2 (2018) 1-8, DOI: https://doi.org/10.18311/jsst/2018/ 16433.
  • [42] S. Vambol, I. Bogdanov, V. Vambol, Y. Suchikova, O. Kondratenko, Forming the low-porous layers of indium phosphide with the predefined quality level, Eastem-European Journal of Enterprise Technologies 3/12(93) (2018) 48-55, DOI: https://doi.org/10.15587/ 1729-4061.2018.133193.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-2cb570f0-6549-472a-9c96-98e0d0f9e1f1
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.