PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Analysis of dustiness state in a driven underground dog heading ventilating by auxiliary air-duct

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Dustiness of the mine atmosphere during carrying out exploitation is one of the most hazardous factors threaten to health and life of employees. Also it is large hazard for all type of mechanical and electrical devices operating in mining headings. Coal dust is also very dangerous due to its possibility of explosion. Currently applied technologies of rock mass mining process, entire transport process of output and applied ventilation system cause that rock and coal dust is presented practically in each of the mining heading. Practically, is impossible to eliminate dust from mining headings. However, one can determine its parameters and potential ways its displacement. In the paper there is presented modeling research methodology of dustiness state in a driven dog heading. Developed model is the basis for this methodology, including the diphase flow of mixture of air and dust in the mining heading. Analysis was performed for real driven dog heading. Based on performed analyses, distributions of particular fraction and movement trajectories of selected dust grains were determined. Developed methodology gives a lot of opportunities for analysis of dustiness state in mining headings and in other compartments. It enables to determine parameters of particular grains and their impact on ventilation parameters of the air stream in the tested headings. Obtained results can also be used to reduce dust hazard.
Słowa kluczowe
Wydawca
Rocznik
Tom
Strony
73--77
Opis fizyczny
Bibliogr. 28 poz., rys., tab.
Twórcy
  • Silesian University of Technology Faculty of Organization and Management ul. Roosevelta 26, 41-800 Zabrze, Poland
  • Silesian University of Technology Faculty of Mining, Safety Engineering and Industrial Automation ul. Akademicka 2, 44-100 Gliwice, Poland
Bibliografia
  • [1] E. Cichowski. Przyczynowość w ocenie zagrożenia pyłowego. Wyd. Politechniki Śląskiej, Gliwice, 2002.
  • [2] W. Cybulski. Wybuchy pyłu węglowego i ich zwalczanie. Wyd. Śląsk, Katowice, 1973.
  • [3] J. Brodny, S. Alszer, J. Krystek, M Tutak M. “Availability analysis of selected mining machinery.” Archives of Control Science, 27(2), pp. 197-210, 2017. doi.org/10.1515/acsc2017-0012 9.
  • [4] J. Brodny, M. Tutak. “Analysing the Utilisation Effectiveness of Mining Machines Using Independent Data Acquisition Systems: A Case Study.” Energies, 12(13), art. no. 2505, pp. 1-15, 2019. doi.org/10.3390/en12132505.
  • [5] J. Brodny, M. Tutak. “Exposure to Harmful Dusts on Fully Powered Longwall Coal Mines in Poland.” International Journal of Environmental Research and Public Health, 15, art. no. 1846, pp. 1-16, 2018. doi.org/10.3390/ijerph15091846.
  • [6] Ż. Konopacka, Z. Nędza, M. Stopa. “Determination of free crystalline silica dusts issued at work stations in rock mining industry.” Mining Science – Mineral Aggregates, 22(1), pp. 75-81, 2015.
  • [7] K. Lebecki, M. Małachowski, T. Sołtysiak. “Continuous dust monitoring in headings in underground coal mines.” Journal of Sustainable Mining, 15, pp. 125-132, 2016. dx.doi.org/10.1016/j.jsm.2017.01.001.
  • [8] J. Brodny, M. Tutak. “Analysis of methane hazard conditions in mine headings.” Tehnički Vjesnik – Tehnical Gazette, 25, pp. 271-276, 2018. doi:10.17559/TV20160322194812.
  • [9] J. Brodny, M. Tutak, A. John. “Analysis of Influence of Types of Rocks Forming the Goaf with Caving on the Physical Parameters of Air Stream Flowing Through These Gob and Adjacent Headings.” Mechanics, 24, pp. 43-49, 2018. doi: 10.5755/j01.mech.24.1.20214.
  • [10] J. Brodny, M. Tutak. “Forecasting the distribution of methane concentration levels in mine headings by means of model-based tests and in-situ measurements.” Archives of Control Science, 29(1), pp. 25-39, 2019.
  • [11] J. Brodny, M. Tutak. “Determination of the zone with a particularly high risk of endogenous fires in the goaves of a longwall with caving.” Journal of Applied Fluid Mechanics, 11(3), pp. 545-553, 2018.
  • [12] M. Tutak, J. Brodny. “Analysis of Influence of Goaf Sealing from Tailgate on the Methane Concentration at the Outlet from the Longwall.” IOP Conference Series: Earth and Environmental Science, 95, 042025, pp. 1-8, 2017. doi:10.1088/1755-1315/95/4/042025.
  • [13] M. Tutak, J. Brodny. “Analysis of the impact of auxiliary ventilation equipment on the distribution and concentration of methane in the tailgate.” Energies, 11(11), art. no. 3076, pp. 1-28, 2018.
  • [14] M. Tutak, J. Brodny. “Predicting methane concentration in longwall regions using artificial neural networks.” International Journal of Environmental Research and Public Health, 16(8), art. 1406, pp. 1-21, 2019.
  • [15] Q.M. Zuo. Diffusion Law and Dust Control Techniques of Large Mining Height Fully-Mechanized Face. China Univ. Min. Technol., Beijing, 2014.
  • [16] M. Cardu, C. Clerici, A. Morandini, E. Ocella. “An experimental research on the comminution law and work index in jaw.” In Proceedings of XVIII International Mineral Processing Congress, Sydney, 1993.
  • [17] K.K. Veersteg, W. Malalasekera. An Introduction to Computational Fluid Dynamics. The Finite Volumne Method. Pearson Education, Prentice Hall, Glasgow, 2007.
  • [18] N. Patankar, D. Joseph. “Modeling and numerical simulation of particulate flows by the Eulerian-Lagrangian approach.” International Journal of Multiphase Flow, 27, pp. 1659-1684, 2001.
  • [19] W.H. Gauvin, S. Katta, F.H. Knelman. “Drop trajectory predictions and their importance in the design of spray dryers.” International Journal of Multiphase Flow, 1, pp.793- 816, 1975.
  • [20] Q. Liu, W. Nie, Y. Hua. “The effects of the installation position of a multiradial swirling air-curtain generator on dust diffusion and pollution rules in a fully mechanized excavation face: a case study.” Powder Technology, 329, pp. 371- 385, 2018.
  • [21] Ansys Theory Guide, ANSYS, Inc.: Southpointe, PA, USA, 2011.
  • [22] G. Sardina, K. Jareteg, H. Ström, S. Sasic. „Assessing the ability of the Eulerian-Eulerian and the Eulerian-Lagrangian frameworks to capture meso-scale dynamics in bubbly flows.” Chemical Engineering Science, 201, pp. 58-73, 2019.
  • [23] A. Klimanek, J. Bigda. “CFD modelling of CO2 enhanced gasification of coal in a pressurized circulating fluidized bed reactor.” Energy,160, pp. 710-719, 2018.
  • [24] S. Hu, G. Feng, X. Ren, G. Xu, P. Chang, Z. Wang, Y. Zhang, Z. Li, Q. Gao. “Numerical study of gas–solid two-phase flow in a coal roadway after blasting.” Advanced Powder Technology, 27, pp. 1607-1617, 2016.
  • [25] T. Ren, Z. Wang, G. Cooper. “CFD modelling of ventilation and dust flow behavior above an underground bin and the design of an innovative dust mitigation system.” Tunnelling and Underground Space Technology, 41, pp. 241-254, 2014.
  • [26] G.X. Yao. Coarse Particle Settling Properties Study Based on Particle Analysis. Jiangxi Univ. Sci. Technol., 2014.
  • [27] D.J. Jing, S.C. Ge, J. Liu. “Numerical simulation of dust diffusion rule and suppression technology in crushing station and its application.” Chinese Journal of Environmental Engineering, 7 (9), pp. 3494-3500, 2013.
  • [28] S.C. Ge, L.S. Shao, Q.J. Qi. “Simulation and optimal design of dust removal scheme of transshipment point in a coal washery.” J. Univ. Sci. Tech. Liaoning, 26(6), pp. 805-808, 2007.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-2cb51fc0-9b14-4f18-82d6-2d0847440d6a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.