PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Relaxed formulation of the design conditions for Takagi-Sugeno fuzzy virtual actuators

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The H∞ norm approach to virtual actuators design, intended to Takagi-Sugeno fuzzy continuous-time systems, is presented in the paper. Using the second Ljapunov method, the design conditions are formulated in terms of linear matrix inequalities in adapted bounded real lemma structures. Related to the static output controller, and for systems under influence of single actuator faults, the design steps are revealed for a three-tank system plant.
Rocznik
Strony
199--221
Opis fizyczny
Bibliogr. 24 poz., schem., wykr., wzory
Twórcy
autor
  • Technical University of Košice, Faculty of Electrical Engineering and Informatics, Department of Cybernetics and Artificial Intelligence, Letná 9, 042 00 Košice, Slovakia
autor
  • Technical University of Košice, Faculty of Electrical Engineering and Informatics, Department of Cybernetics and Artificial Intelligence, Letná 9, 042 00 Košice, Slovakia
autor
  • Technical University of Košice, Faculty of Electrical Engineering and Informatics, Department of Cybernetics and Artificial Intelligence, Letná 9, 042 00 Košice, Slovakia
Bibliografia
  • [1] H. Alwi, C. Edwards and C. P. Tan: Fault Detection and Fault-Tolerant Control Using Sliding Modes, London, Springer, 2011.
  • [2] A. M. Amani, A. Afshar and M. B. Menhaj: Fault tolerant networked control systems subject to actuator failure using virtual actuator technique. Prep. 18th IFAC World Congress, Milano, Italy, (2011), 5465-5470.
  • [3] M. Blanke, M. Kinnaert, J. Lunze and M. Stariswiecki: Diagnosis and Fault-Tolerant Control, Berlin, Springer-Verlag, 2006.
  • [4] M. Chadli and P. Borne: Multiple Models Approach in Automation. Takagi- Sugeno Fuzzy Systems, Hoboken, John Wiley & Sons, 2013.
  • [5] C. A. R. Crusius and A. Trofino: Sufficient LMI conditions for output feedback control problems. IEEE Tran. Automatic Control, 44(5), (1999), 1053-1057.
  • [6] Z. Gao and P. J. Antsaklis: Reconfigurable control system design via perfect model-following. In Proc. 1991 AIAA Guidance, Navigation and Control Conference, New Orleans, LA, USA, (1991), 239-246.
  • [7] W. M. Haddad and V. CHellaboina: Nonlinear Dynamical Systems and Control. A Lyapunov-Based Approach, Princeton, Princeton University Press, 2008.
  • [8] D. Krokavec and A. Filasova: Stabilizing fuzzy output control for a class of nonlinear systems. Advances in Fuzzy Systems, 2013(1), Article ID 294971, 9p, (2013).
  • [9] D. Krokavec, A. Filasová and P. Liščinský: Dynamic output control of nonlinear systems described by Takagi-Sugeno models. Proc. 2014 IEEE Multiconf. on Systems and Control MSC 2014, Antibes, France, (2014), 959-964.
  • [10] D. Krokavec, A. Filasová and V. Serb´ak: FTC structures with virtual actuators and dynamic output controllers. Proc. 9th IFAC Symp. Fault Detection, Supervision and Safety for Technical Processes SAFEPROCESS’15, Paris, France, (2015), 511-516.
  • [11] D. Krokavec, A. Filasová and V. Serbák: FTC with dynamic virtual actuators: Characterization via dynamic output controllers and H∞ approachs. Mathematical Problems in Engineering, 2016 Article ID 259056, 16p, (2015).
  • [12] A. M. Nagy, B. Marx, G. Mourot, G. Schutz and J. Ragot: State estimation of the three-tank system using a multiple model. Proc. Joint 48th IEEE Conf. on Decision and Control and 28th Chinese Control Conference, Shanghai, P.R. China, (2009), 7795-7800.
  • [13] J. Lunze and T. Steffen: Control reconfiguration after actuator failures using disturbance decoupling methods. IEEE Tran. Automatic Control, 51(10), (2006), 1590-1601.
  • [14] M. S. Mahmoud and Y. Xia: Analysis and Synthesis of Fault-Tolerant Control Systems, Chichester, John Wiley & Sons, 2014.
  • [15] H. Noura, D. Theilliol, J. C. Ponsart and A. Chamseddine: Fault- Tolerant Control Systems. Design and Practical Applications, London, Springer, 2009.
  • [16] D. Peaucelle, D. Henrion, Y. Labit and K. Taitz: User’s Guide for SeDuMi Interface 1.04, Toulouse, France: LAAS-CNRS, 2002.
  • [17] J. H. Richter: Reconfigurable Control of Nonlinear Dynamical Systems. A Fault- Hiding Approach, Berlin, Springer-Verlag, 2011.
  • [18] T. Steffen: Control Reconfiguration of Dynamical Systems. Linear Approaches and Structural Tests, Berlin, Springer-Verlag, 2005.
  • [19] T. Takagi and M. Sugeno: Fuzzy identification of systems and its applications to modeling and control. IEEE Tran. Systems, Man, and Cybernetics, 15(1), (1985), 116-132.
  • [20] K. Tanaka and H. O. Wang: Fuzzy Control Systems Design and Analysis. A Linear Matrix Inequality Approach, New York, John Wiley & Sons, 2001.
  • [21] M. Witczak: Fault Diagnosis and Fault-Tolerant Control Strategies for Non- Linear Systems. Analytical and Soft Computing Approaches, Cham, Springer, 2014.
  • [22] H. O. Wang, K. Tanaka and M. F. Griffin: An approach to fuzzy control of nonlinear systems. Stability and design issues. IEEE Tran. Fuzzy Systems, 4(1), (1996), 14-23.
  • [23] K. Zhang, B. Jiang and P. Shi: Observer-Based Fault Estimation and Accomodation for Dynamic Systems, Berlin, Springer-Verlag, 2013.
  • [24] A. Zolghadri, D. Henry, J. Cieslak, D. Efimov and P. Goupil: Fault Diagnosis and Fault-Tolerant Control and Guidance for Aerospace Vehicles. From Theory to Application, London, Springer, 2014.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-2cb45ec5-f18c-49d0-b09b-8398f0745d4d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.