Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
A method of tensile testing of materials in dynamic conditions based on a slightly modified compressive split Hopkinson bar system using a shoulder is described in this paper. The main goal was to solve, with the use of numerical modelling, the problem of wave disturbance resulting from application of a shoulder, as well as the problem of selecting a specimen geometry that enables to study the phenomenon of high strain-rate failure in tension. It is shown that, in order to prevent any interference of disturbance with the required strain signals at a given recording moment, the positions of the strain gages on the bars have to be correctly chosen for a given experimental setup. Besides, it is demonstrated that - on the basis of simplified numerical analysis - an appropriate gage length and diameter of a material specimen for failure testing in tension can be estimated.
Czasopismo
Rocznik
Tom
Strony
425--436
Opis fizyczny
Bibliogr. 23 poz., rys., tab., wykr., wzory
Twórcy
autor
- Military University of Technology, Faculty of Mechanical Engineering, Kaliskiego 2, 00-908 Warsaw, Poland
autor
- Military University of Technology, Faculty of Mechatronics and Aviation, Kaliskiego 2, 00-908 Warsaw, Poland
Bibliografia
- [1] Kolsky, H. (1949). An investigation of the mechanical properties of materials at very high rates of loading. Proc. Phys. Soc. Lond., B 62, 676-700.
- [2] Baranowski, P., Janiszewski, J., Malachowski, J. (2014). Study on computational methods applied to modelling of pulse shaper in split-Hopkinson bar. Arch. Mech., 66, 6, 429-452.
- [3] Kruszka, L., Magier, M., Zielenkiewicz, M. (2014). Experimental analysis of visco-plastic properties of the aluminium and tungsten alloys by means of Hopkinson bars technique. Applied Mechanics and Materials, 566, DOI:10.4028/www.scientific.net/amm.566.110.
- [4] Moćko, W. (2014). The influence of stress-controlled tensile fatigue loading on the stress-strain characteristics of AISI 1045 steel. Materials & Design 58, 145-153.
- [5] Hauser, F.E., Simmons, J.A., Dorn, J.E. (1961). Strain rate effects in plastic wave propagation. Response of Metals to High Velocity Deformation. Shewmon, P.G., Zackay, V.F., (ed.), New York: Interscience, 93-114.
- [6] Lindholm, U.S. (1964). Some experiments with the split Hopkinson pressure bar. J. Mech. Phys. Solids, 12, 317-335.
- [7] Owens, A.T., Tippur, H.V. (2008). A Tensile Split Hopkinson Bar for Testing Particulate Polymer Composites Under Elevated Rates of Loading. Exp. Mech., 49(6), 799-811.
- [8] Field, J.E., Walley, S.M., Proud, W.G., Goldrein, H.T., Siviour, C.R. (2004). Review of experimental techniques for high rate deformation and shock studies. Int. J. of Impact Engineering, 30, 725−775, DOI:10.1016/j.ijimpeng.2004.03.005.
- [9] Cadoni, E., Solomos, G., Albertini, C. (2009). Mechanical characterization of concrete in tension and compression at high strain rate using a modified Hopkinson bar. Mag. Concrete Res., 61, 221-228.
- [10] Gerlach, R., Kettenbeil, Ch., Petrinic, N. (2012). A new split Hopkinson tensile bar design. Int. J. of Impact Engineering, 50, 63-67.
- [11] Mohr, D., Gary, G. (2007). M-Shaped specimen for the high-strain rate tensile testing using a split Hopkinson pressure bar apparatus. Exp. Mech., 47, 681-692, DOI:10.1007/s11340-007-9035-y.
- [12] Nicholas, T. (1981). Tensile testing of materials at high rates of strain. Exp. Mech., 21, 177-185, DOI:10.1007/BF02326644.
- [13] Lindholm, U.S., Yeakley, L.M. (1968). High Strain-rate Testing: Tension and Compression. Exp. Mech., 8(1), 1-9.
- [14] Staab, G.H., Gilat, A. (1991). A direct-tension split Hopkinson bar for high strain-rate testing. Exp. Mech., 31(3), 232-235.
- [15] Ogawa, K. (1984). Impact-tension compression test by using a split-Hopkinson bar. Exp. Mech., 24(2), 81-86.
- [16] Hallquist, J.O. (2005). Ls-Dyna Theory Manual. Livermore Software Technology Corporation, Livermore.
- [17] Panowicz, R. (2013). Analysis of selected contact algorithms types in terms of their parameters selection. Journal of KONES Powertrain and Transport, 20(1).
- [18] Konyukhov, A., Schweizerhof, K. (2013). Computational contact mechanics, geometrically exact theory for arbitrary shaped bodies, Lecture notes in applied and computational mechanics. Springer, DOI: 10.1007/978-3-642-31531-2.
- [19] Fischer, K.A., Wriggers, P. (2006). Mortar based frictional contact formulation for higher order interpolations using the moving friction cone. Computer Methods in Applied Mechanics and Engineering, 195, 5020-5036.
- [20] Johnson, G.R., Cook, W.H. (1983). An constitutive model and data for metals subjected to large strains, high strain rates and high temperatures. 7th International Symposium on Ballistics, 541-547.
- [21] Steinberg, D.J. (1996). Equation of State and Strength Properties of Selected Materials. LLNL Report no. UCRL-MA-106439.
- [22] Moćko, W. (2013). Analysis of the impact of the frequency range of the tensometer bridge and projectile geometry on the results of measurements by the split Hopkinson pressure bar method. Metrol. Meas. Syst., 20(4), 555-564.
- [23] Johnson, G.R., Cook, W.H. (1985). Fracture characteristics of three metals subjected to various strains, strain rates, temperatures and pressures. Engineering Fracture Mechanics, 21(1), 31-48.
Uwagi
EN
This work was partly supported by the National Centre for Research and Development (Grant No. DOBR-BIO4/031/13249/2013).
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-2cb3a1aa-0b62-47e3-96c0-d789e9e429f7
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.