PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Control strategies for the grid side converter in a wind generation system based on a fuzzy approach

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Two techniques for the control of a grid side converter in a wind energy conversion system. The system is composed of a fixed pitch angle wind turbine followed by a permanent magnet synchronous generator and power electronic converters AC-DC-AC. The main interest is in how to control the inverter in order to ensure the stability of the DC link voltage. Two control methods based on the fuzzy approach are applied and compared. First, a direct Mamdani fuzzy logic controller is presented. Then, a T–S fuzzy controller is elaborated based on a T–S fuzzy model. The Lyapunov theorem and H-infinity performance are exploited for stability analysis. Besides, the feedback controller gains are determined using linear matrix inequality tools. Simulation results are derived in order to prove the robustness of the proposed control algorithms and to compare their performances.
Rocznik
Strony
323--333
Opis fizyczny
Bibliogr. 25 poz., rys., tab., wykr.
Twórcy
autor
  • Laboratory of Sciences and Techniques of Automatic Control and Computer Engineering, National Engineering School of Sfax, 3072, Road Soukra km 4, Sfax, Tunisia
autor
  • Laboratory of Sciences and Techniques of Automatic Control and Computer Engineering, National Engineering School of Sfax, 3072, Road Soukra km 4, Sfax, Tunisia
autor
  • Research Center in Informatics, Signal and Automatic Control in Lille (CRIStAL), University of Lille 1, 59655 Villeneuve d’Ascq Cedex, Lille, France
autor
  • Laboratory of Sciences and Techniques of Automatic Control and Computer Engineering, National Engineering School of Sfax, 3072, Road Soukra km 4, Sfax, Tunisia
Bibliografia
  • [1] Babu, N.R. and Arulmozhivarman, P. (2013). Wind energy conversion systems—a technical review, Journal of Engineering Science and Technology 8(4): 493–507.
  • [2] Blaabjerg, F., Liserre, M. and Ma, K. (2012). Power electronics converters for wind turbine systems, IEEE Transactions on Industry Applications 48(2): 708–719.
  • [3] Boyd, S., El Ghaoui, L., Feron, E. and Balakrishnan, V. (1994). Linear Matrix Inequalities in System and Control Theory, SIAM, Philadelphia, PA.
  • [4] Camacho, E.F., Samad, T., Garcia-Sanz, M. and Hiskens, I. (2011). Control for renewable energy and smart grids, in T. Samad and A.M. Annaswamy (Eds.), The Impact of Control Technology, Control Systems Society, Copenhagen, pp. 69–88.
  • [5] Carlson, D., Haynsworth, E. and Markham, T. (1974). A generalization of the Schur complement by means of the Moore–Penrose inverse, SIAM Journal on Applied Mathematics 26(1): 169–175.
  • [6] Chen, Y.-M., Cheng, C.-S. and Wu, H.-C. (2006). Grid-connected hybrid PV/WIND power generation system with improved DC bus voltage regulation strategy, 21st Annual IEEE Applied Power Electronics Conference and Exposition, APEC’06, Dallas, TX, USA, p. 7.
  • [7] Chen, Z., Gomez, S.A. and McCormick, M. (2000). A fuzzy logic controlled power electronic system for variable speed wind energy conversion systems, 11th International Conference on Power Electronics and Variable Speed Drives, Sydney, Australia, pp. 114–119.
  • [8] Chinchilla, M., Arnaltes, S. and Burgos, J.C. (2006). Control of permanent-magnet generators applied to variable-speed wind-energy systems connected to the grid, IEEE Transactions on Energy Conversion 21(1): 130–135.
  • [9] Chung, I.-Y., Liu, W., Cartes, D.A., Collins, E.G. and Moon, S.-I. (2010). Control methods of inverter-interfaced distributed generators in a microgrid system, IEEE Transactions on Industry Applications 46(3): 1078–1088.
  • [10] Dixon, J., Contardo, J. and Moran, L. (1997). DC link fuzzy control for an active power filter, sensing the line current only, 28th Annual IEEE Power Electronics Specialists Conference, PESC’97, Saint Louis, MO, USA, Vol. 2, pp. 1109–1114.
  • [11] Farh, H.M. and Eltamaly, A.M. (2013). Fuzzy logic control of wind energy conversion system, Journal of Renewable and Sustainable Energy 5(2): 023125.
  • [12] Goudarzi, N. and Zhu, W. (2013). A review on the development of wind turbine generators across the world, International Journal of Dynamics and Control 1(2): 192–202.
  • [13] Harrabi, N., Souissi, M., Aitouche, A. and Chaabane, M. (2016). MPPT algorithm for wind energy generation system using TS fuzzy modeling, 5th International Conference on Systems and Control (ICSC), Marrakesh, Morrocco, pp. 157–162.
  • [14] Harrabi, N., Souissi,M., Aitouche, A. and Chabaane, M. (2015). Intelligent control of wind conversion system based on PMSG using TS fuzzy scheme, International Journal of Renewable Energy Research 5(4): 952–960.
  • [15] Kadam, D. and Kushare, B. (2012). Overview of different wind generator systems and their comparisons, International Journal of Engineering Science & Advanced Technology 2(4): 1076–1081.
  • [16] Kim, Y.-S., Chung, I.-Y. and Moon, S.-I. (2015). Tuning of the PI controller parameters of a PMSG wind turbine to improve control performance under various wind speeds, Energies 8(2): 1406–1425.
  • [17] Mansour, M., Mansouri, M. and Mmimouni, M. (2011). Study and control of a variable-speed wind-energy system connected to the grid, International Journal of Renewable Energy Research 1(2): 96–104.
  • [18] Nguang, S.K. and Shi, P. (2006). Robust h infinity output feedback control design for fuzzy dynamic systems with quadratic d stability constraints: An LMI approach, Information Sciences 176(15): 2161–2191.
  • [19] Nguyen, H.M. and Naidu, D.S. (2011). Advanced control strategies for wind energy systems: An overview, IEEE/PES Power Systems Conference and Exposition (PSCE), Phoenix, AZ, USA, pp. 1–8.
  • [20] Skretas, S.B. and Papadopoulos, D.P. (2008). Enhanced design and performance of WECS with PMSG connected to MV grid using intelligent control methods, 18th International Conference on Electrical Machines, ICEM 2008, Vilamoura, Portugal, pp. 1–6.
  • [21] Spooner, E. and Williamson, A. (1996). Direct coupled, permanent magnet generators for wind turbine applications, IEE Proceedings Electric Power Applications 143(1): 1–8.
  • [22] Tapia, A., Tapia, G., Ostolaza, J.X. and Saenz, J.R. (2003). Modeling and control of a wind turbine driven doubly fed induction generator, IEEE Transactions on Energy Conversion 18(2): 194–204.
  • [23] Tsoutsos, T.D. and Stamboulis, Y.A. (2005). The sustainable diffusion of renewable energy technologies as an example of an innovation-focused policy, Technovation 25(7): 753–761.
  • [24] Wang, H.O., Tanaka, K. and Griffin, M.F. (1996). An approach to fuzzy control of nonlinear systems: Stability and design issues, IEEE Transactions on Fuzzy Systems 4(1): 14–23.
  • [25] Zhang, J. and Cheng, M. (2010). Dc link voltage control strategy of grid-connected wind power generation system, 2nd IEEE International Symposium on Power Electronics for Distributed Generation Systems (PEDG), Hefei, China, pp. 970–975.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-2cb357be-ee12-4175-b000-0ae5a74539d2
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.