Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
In the previous study, we designed one personal rescue winch for high-rise building rescue. Its key requirement is to be small and light enough to suit users. In addition to using lightweight and reasonable materials as in the proposed winch design, in this study, we proceed to optimize the weight of one two-level gear train, which accounts for a large proportion of weight. The first stage is building a weight optimization problem model with seven independent variables, establishing one optimal algorithm, and investigating the variables by Matlab software. The other is replacing the web material of the gears and pinions with Aluminum 6061-T6 and optimizing their hole diameters and hole numbers through using Ansys software. The obtained result shows a significant weight reduction. Compared to the original design, the weight reduces by 10.21% and 52.40% after the first optimal and last stages, respectively.
Wydawca
Czasopismo
Rocznik
Tom
Strony
271--286
Opis fizyczny
Bibliogr. 19 poz., rys., tab.
Twórcy
autor
- Faculty of Mechanical Engineering, National University of Civil Engineering, Hanoi, Vietnam
autor
- Faculty of Mechanical Engineering, National University of Civil Engineering, Hanoi, Vietnam
autor
- Faculty of Mechanical Engineering, National University of Civil Engineering, Hanoi, Vietnam
Bibliografia
- [1] J.E. Renton and P.T.M. Nott. Personal height rescue apparatus. Patent No. US9427607B2, 2016.
- [2] J. Tremblay. Tower rescue emergency module. Patent No. US2013/0206505A1, 2013.
- [3] V.T. Nguyen, K.A. Nguyen, and V.L. Nguyen. An improvement of a hydraulic selfclimbing formwork. Archive of Mechanical Engineering, 66(4):495–507, 2019. doi: 10.24425/ame.2019.131419.
- [4] T.G. Duong, V.T. Nguyen, and T.T.D. Nguyen. Research on designing the individual rescue winch. Journal of Science and Technology in Civil Engineering, 15(1V):123–133, 2021. doi: 10.31814/stce.nuce2021-15(1V)-11.
- [5] R.V. Rao and V.J. Savsani. Mechanical Design Optimization Using Advanced Optimization Techniques. Springer, 2012.
- [6] M.W. Huang and J.S. Arora. Optimal design with discrete variables: some numerical experiments. International Journal for Numerical Methods in Engineering, 40:165–188, 1997. doi: 10.1002/(sici)1097-0207(19970115)40:1165::aid-nme60>3.0.co;2-i.
- [7] J.S. Arora and M.W. Huang. Discrete structural optimization with commercially available sections. Structural Eng./Earthquake Eng., JSCE, 13(2):93–110, 1996. doi: 10.2208/jscej.1996.549_1.
- [8] T. Yokota, T. Taguchi, and M. Gen. A solution method for optimal weight design problem of the gear using genetic algorithms. Computer & Industrial Engineering, 35(3-4):523–526, 1998. doi: 10.1016/s0360-8352(98)00149-1.
- [9] H. Reddy, J.A.S. Kumar, and A.V. Hari Babu. Minimum weight optimization of a gear train by using genetic algorithm. International Journal of Current Engineering and Technology, 6(4):1119–1124, 2016.
- [10] B. Mahiddini, T. Chettibi, K. Benfriha, and A. Aoussat. Optimum design of a spur gear using a two level optimization. Mechanika, 25(4): 304–312, 2019. doi: 10.5755/j01.mech.25.4.18994.
- [11] S. Kirkpatrick, C.D. Gelatt Jr., and M.P. Vecchi. Optimization by simulated annealing. Science, 220(4598):671–680, 1983. doi: 10.1126/science.220.4598.671.
- [12] P. Starry, E. Dupinet, and M. Mekhilef. A new way to optimize mechanical systems using simulated annealing. Transactions on the Built Environment, 2:569–583, 1993.
- [13] V. Savsani, R.V. Rao, and D.P. Vakharia. Optimal weight design of a gear train using particle swarm optimization and simulated annealing algorithms. Mechanism and Machine Theory, 45(3):531–541, 2010. doi: 10.1016/j.mechmachtheory.2009.10.010.
- [14] N. Godwin Raja Ebenezer, S. Ramabalan, and S. Navaneethasanthakumar. Practical optimal design on two stage spur gears train using nature inspired algorithms. International Journal of Engineering and Advanced Technology, 8(6):4073–4081, 2019. doi: 10.35940/ijeat.F8638.088619.
- [15] V. Pimpalte and S.C. Shilwant. Topology optimization of gears from two wheeler gear set using parametric study. IOSR Journal of Mechanical and Civil Engineering, 14(1):22–31, 2017. doi: 10.9790/1684-1401022231.
- [16] R. Ramadani, A. Belsak, M. Kegl, J. Predan, and S. Pehan. Topology optimization based design of lightweight and low vibration gear bodies. International Journal of Simulation Modelling, 17(1):92–104, 2018. doi: 10.2507/IJSIMM17(1)419.
- [17] A.J. Muminovic, A. Muminovic, E. Mesic, I. Saric, and N. Pervan. Spur gear tooth topology optimization: finding optimal shell thickness for spur gear tooth produced using additive manufacturing. TEM Journal, 8(3):788–794, 2019. doi: 10.18421/TEM83-13.
- [18] ISO 54:1996, Cylindrical gears for general engineering and for heavy engineering – Modules. International Organization for Standardization, 1996.
- [19] R.G. Budynas and J.K. Nisbett. Shigley’s Mechanical Engineering Design. 10th edition, McGraw-Hill, 2020.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-2cb264c3-9923-4054-8877-a69b5441d8a4