Tytuł artykułu
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The aim of this research is to assess relatively new hybrid methods for changes points and trends detection on rainfall series: Dynamic Programming Bayesian Change Point Approach (BA), Şen’s innovative trend method (ITM) and its double (D-ITM) and triple (T-ITM) version using the multi-scale analysis of the discrete wavelet transform (DWT) as a coupling method. Three representatives rainfall stations of northern Algeria were analysed at annual scale during the period 1920–2011. Moreover, correlation and spectral analysis (CSA) was applied for periodicity analysis. The CSA indicates the dominance of interannual to multidecadal rainfall periodicity fuctuations (2-years, 5-years and 20-years) characterising long term structured processes. Moreover, an abrupt downward trend with signifcant probability was detected from the 1970s with a relatively wet period between the periods 1950–1970 and 2001–2011. The latter is observed in particular in the central and eastern stations, well-explained by the BA-DWT. The results showed that the comparison results from diferent modelling approaches found that the hybrid models (BA-DWT, ITM-DWT, D-ITM-DWT, T-ITM-DWT) often perform better than the conventional approach (BA, ITM, D-ITM, T-ITM), where the computation time is very reasonable. The analysis revealed that information stemming from discrete wavelet spectrums signifcantly increased the accuracy of the methods for detecting hidden change points and trends.
Wydawca
Czasopismo
Rocznik
Tom
Strony
1443--1460
Opis fizyczny
Bibliogr. 78 poz.
Twórcy
autor
- Research Laboratory of Water Resources, Soil and Environment, Department of Civil Engineering, Faculty of Civil Engineering and Architecture, Amar Telidji University, P. O. Box 37.G, 03000 Laghouat, Algeria
autor
- Research Laboratory of Water Resources, Soil and Environment, Department of Civil Engineering, Faculty of Civil Engineering and Architecture, Amar Telidji University, P. O. Box 37.G, 03000 Laghouat, Algeria
autor
- Research Laboratory of Water Resources, Soil and Environment, Department of Civil Engineering, Faculty of Civil Engineering and Architecture, Amar Telidji University, P. O. Box 37.G, 03000 Laghouat, Algeria
autor
- LGBO, Laboratory, Earth Sciences Faculty, University of Science and Technology Houari Boumediene, BP 32, 16311 Bab Ezzouar, Algeria
autor
- LGEA, Laboratory of Geomaterials, Environment and Development, Department of Civil Engineering, Mouloud Mammeri University, BP no 10.RP, Hasnaoua, Tizi-Ouzou, Algeria
Bibliografia
- 1. Abda Z, Chettih M (2018) Forecasting daily flow rate-based intelligent hybrid models combining wavelet and Hilbert-Huang transforms in the mediterranean basin in northern Algeria. Acta Geophys 66(5):1131–1150. https://doi.org/10.1007/s11600-018-0188-0
- 2. Abda Z, Chettih M, Zerouali B (2020) Assessment of neuro-fuzzy approach based different wavelet families for daily flow rates forecasting. Model Earth Syst Environ. https://doi.org/10.1007/s40808-020-00855-1
- 3. Achite M, Buttafuoco G, Toubal KA, Luca F (2017) Precipitation spatial variability and dry areas temporal stability for different elevation classes in the Macta basin (Algeria). Environ Earth Sci 76(13):458. https://doi.org/10.1007/s12665-017-6794-3
- 4. Achour K, Meddi M, Zeroual A et al (2020) Spatio-temporal analysis and forecasting of drought in the plains of northwestern Algeria using the standardized precipitation index. J Earth Syst Sci 129:42. https://doi.org/10.1007/s12040-019-1306-3
- 5. Adamowski K, Prokoph A, Adamowski J (2009) Development of a new method of wavelet aided trend detection and estimation. Hydrol Process 23(18):2686–2696. https://doi.org/10.1002/hyp.7260
- 6. Adarsh S, Janga Reddy M (2015) Trend analysis of rainfall in four meteorological subdivisions of southern India using nonparametric methods and discrete wavelet transforms. Int J Climatol 35(6):1107–1124. https://doi.org/10.1002/joc.4042
- 7. Adjim H, Djedid A (2018) Drought and water mobilization in semi-arid zone: The example of Hammam Boughrara dam (North-West of Algeria). J Water Land Dev 37(1):3–10. https://doi.org/10.2478/jwld-2018-0019
- 8. Alashan S (2018) An improved version of innovative trend analyses. Arab J Geosci 11(3):50. https://doi.org/10.1007/s12517-018-3393-x
- 9. Almazroui M, Sen Z, Mohorji AM, Islam MN (2018) Impacts of climate change on water engineering structures in arid regions: case studies in Turkey and Saudi Arabia. Earth Syst Environ. https://doi.org/10.1007/s41748-018-0082-61-15
- 10. Bouabdelli S, Meddi M, Zeroual A, Alkama R (2020) Hydrological drought risk recurrence under climate change in the karst area of Northwestern Algeria. J Water Clim Change. https://doi.org/10.2166/wcc.2020.207
- 11. Box GE, Jenkins GM (1976) Time series analysis: forecasting and control, revised edn. Holden-Day, San Francisco
- 12. Caloiero T, Aristodemo F, Ferraro DA (2019) Trend analysis of significant wave height and energy period in southern Italy. Theor Appl Climatol. https://doi.org/10.1007/s00704-019-02879-9
- 13. Chakraborty D, Saha S, Singh RK, Sethy BK, Kumar A, Saikia US, Walling I (2017) Trend analysis and change point detection of mean air temperature: a spatio-temporal perspective of North-Eastern India. Environ Process 4(4):937–957. https://doi.org/10.1007/s40710-017-0263-6
- 14. Da Silva RM, Santos CAG, da Costa Silva JFCB et al (2020) Spatial distribution and estimation of rainfall trends and erosivity in the Epitácio Pessoa reservoir catchment, Paraíba, Brazil. Natural Hazards. https://doi.org/10.1007/s11069-020-03926-9
- 15. Da Silva RM, Santos CAG, Moreira M et al (2015) Rainfall and river flow trends using Mann-Kendall and Sen’s slope estimator statistical tests in the Cobres River basin. Nat Hazards 77:1205–1221. https://doi.org/10.1007/s11069-015-1644-7
- 16. Daubechies I (1992) Ten lectures on wavelets. J Soc Ind Appl Math. https://doi.org/10.1137/1.9781611970104
- 17. Descroix L, Guichard F, Grippa M, Lambert L, Panthou G, Mahé G, Bouaita Y (2018) Evolution of surface hydrology in the Sahelo-Sudanian strip: an updated review. Water 10(6):748. https://doi.org/10.3390/w10060748
- 18. Elouissi A, Habi M, Benaricha B, Boualem SA (2017) Climate change impact on rainfall spatio-temporal variability (Macta watershed case, Algeria). Arab J Geosci 10(22):496. https://doi.org/10.1007/s12517-017-3264-x
- 19. Elouissi A, Şen Z, Habi M (2016) Algerian rainfall innovative trend analysis and its implications to Macta watershed. Arab J Geosci 9(4):303. https://doi.org/10.1007/s12517-016-2325-x
- 20. Gocic M, Trajkovic S (2013) Analysis of changes in meteorological variables using Mann-Kendall and Sen's slope estimator statistical tests in Serbia. Glob Planet Change 100:172–182. https://doi.org/10.1016/j.gloplacha.2012.10.014
- 21. Güçlü YS (2018) Multiple Şen-innovative trend analyses and partial Mann-Kendall test. J Hydrol 566:685–704. https://doi.org/10.1016/j.jhydrol.2018.09.034
- 22. Güçlü YS, Şişman E, Dabanlı İ (2020) Innovative triangular trend analysis. Arab J Geosci 13:27. https://doi.org/10.1007/s12517-019-5048-y
- 23. Hallouz F, Meddi M, Mahé G et al (2020) Analysis of meteorological drought sequences at various timescales in semi-arid climate: case of the Cheliff watershed (northwest of Algeria). Arab J Geosci 13:280. https://doi.org/10.1007/s12517-020-5256-5
- 24. Hamlaoui-Moulai L, Mesbah M, Souag-Gamane D, Medjerab A (2013) Detecting Hydro-Climatic Change Using Spatiotemporal Analysis of Rainfall Time Series in Western Algeria. Nat Hazards 65(3):1293–1311. https://doi.org/10.1007/s11069-012-0411-2
- 25. Intergovernmental Panel on Climate Change (IPCC) (2014) The fifth assessment report (AR5). http://www.ipcc.ch/. Accessed 19 Oct 2018
- 26. Jemai H, Ellouze M, Abida H, Laignel B (2018) Spatial and temporal variability of rainfall: case of Bizerte-Ichkeul Basin (Northern Tunisia). Arab J Geosci 11(8):177. https://doi.org/10.1007/s12517-018-3482-x
- 27. Jenkins GM, Watts DG (1968) Spectral Analysis and its Application. Holden-Day, San Francisco, p 525
- 28. Khezazna A, Amarchi H, Derdous O, Bousakhria F (2017) Drought monitoring in the Seybouse basin (Algeria) over the last decades. Water Land Dev 33(1):79–88. https://doi.org/10.1515/jwld-2017-0022
- 29. Khoualdia W, Djebbar Y, Hammar Y (2014) Caractérisation de la variabilité climatique : cas du bassin versant de la Medjerda (Nord-Est algérien). Synthèse : Revue des Sciences et de la Technologie 29(1):6–23
- 30. Kisi O (2015) An innovative method for trend analysis of monthly pan evaporations. J Hydrol 527:1123–1129. https://doi.org/10.1016/j.jhydrol.2015.06.009
- 31. Labat D, Ababou R, Mangin A (2002) Analyse multirésolution croisée de pluies et débits de sources karstiques. C R Geosci. https://doi.org/10.1016/S1631-0713(02)01795-9
- 32. Labat D, Ababou R, Mangin A (2000) Rainfall–runoff relations for karstic springs. Part II: continuous wavelet discrete orthogonal multiresolution analyses. J Hydrol 238(3):149–178. https://doi.org/10.1016/S0022-1694(00)00322-X
- 33. Larocque M, Mangin A, Razack M, Banton O (1998) Contribution of correlation and spectral analyses to the regional study of a large karst aquifer (Charente, France). J Hydrol 205(3–4):217–231. https://doi.org/10.1016/S0022-1694(97)00155-8
- 34. Longobardi A, Villani P (2010) Trend analysis of annual and seasonal rainfall time series in the Mediterranean area. Int J Climatol 30(10):1538–1546. https://doi.org/10.1002/joc.2001
- 35. Mallat SG (1989) A theory for multiresolution signal decomposition: the wavelet representation. IEEE Trans Pattern Anal Mach Intell 11:674–693. https://doi.org/10.1109/34.192463
- 36. Mangin A (1984) Pour une meilleure connaissance des systèmes hydrologiques à partir des analyses corrélatoire et spectrale. J Hydrol 67(1–4):25–43. https://doi.org/10.1016/0022-1694(84)90230-0
- 37. Meddi H, Meddi M, Assani AA (2014) Study of Drought in Seven Algerian Plains. Arab J Sci Eng 39(1):339–359. https://doi.org/10.1007/s13369-013-0827-3
- 38. Meddi MM, Assani AA, Meddi H (2010) Temporal variability of annual rainfall in the Macta and Tafna Catchments, Northwestern Algeria. Water Resour Manag 24:3817–3833. https://doi.org/10.1007/s11269-010-9635-7
- 39. Mellak S, Souag-Gamane D (2020) Spatio-temporal analysis of maximum drought severity using Copulas in Northern Algeria. Journal Water Clim Change. https://doi.org/10.2166/wcc.2020.070
- 40. Mrad D, Dairi S, Boukhari S, Djebbar Y (2019) Applied multivariate analysis on annual rainfall in the northeast of Algeria. J Water Clim Change. https://doi.org/10.2166/wcc.2019.272
- 41. Nakken M (1999) Wavelet Analysis of Rainfall-Runoff Variability Isolating Climatic from Anthropogenic Patterns. Environ Modell Softw 14:283–295. https://doi.org/10.1016/S1364-8152(98)00080-2
- 42. Nalley D, Adamowski J, Khalil B (2012) Using discrete wavelet transforms to analyse trends in streamflow and precipitation in Quebec and Ontario (1954–2008). J Hydrol 475:204–228. https://doi.org/10.1016/j.jhydrol.2012.09.049
- 43. Nka Nnomo Bernadette (2010). Analyse en ondelettes des séries de température de l’eau de la rivière des anglais (canada). Mémoire pour l’obtention du master en ingénierie de l'eau et de l'environnement de Institut International d'Ingénierie de l'Eau et de l'Environnement
- 44. Nouaceur Z, Murărescu O (2016) Rainfall variability and trend analysis of annual rainfall in North Africa. Int J Earth Atmos Sci 2016:7230450. https://doi.org/10.1155/2016/7230450
- 45. Nourani V, Nezamdoost N, Samadi M, Daneshvar Vousoughi F (2015) Wavelet-based trend analysis of hydrological processes at different timescales. J Water Clim Change 6(3):414–435. https://doi.org/10.2166/wcc.2015.043
- 46. Oroud IM (2018) Global Warming and its Implications on Meteorological and Hydrological Drought in the Southeastern Mediterranean. Environ Process 5(2):329–348. https://doi.org/10.1007/s40710-018-0301-z
- 47. Ouatiki H, Boudhar A, Ouhinou A, Arioua A, Hssaisoune M, Bouamri H, Benabdelouahab T (2019) Trend analysis of rainfall and drought over the Oum Er-Rbia River Basin in Morocco during 1970–2010. Arab J Geosci 12(4):128. https://doi.org/10.1007/s12517-019-4300-9
- 48. Ozer P, Erpicum M, Demarée G, Vandiepenbeeck M (1990s) The Sahelian drought may have ended during the 1990s. Hydrolog Sci J 48(3):489–492. https://doi.org/10.1623/hysj.48.3.489.45285
- 49. Öztopal A, Sen Z (2017) Innovative trend methodology applications to precipitation records in Turkey. Water Resour Manag 31(3):727–737. https://doi.org/10.1007/s11269-016-1343-5
- 50. Palizdan N, Falamarzi Y, Huang YF, Lee TS (2017) Precipitation trend analysis using discrete wavelet transform at the Langat River Basin, Selangor, Malaysia. Stoch Env Res Risk A 31(4):853–877. https://doi.org/10.1007/s00477-016-1261-3
- 51. Pandey BK, Tiwari H, Khare D (2017) Trend analysis using discrete wavelet transform (DWT) for long-term precipitation (1851–2006) over India. Hydrolog Sci J 62(13):2187–2208. https://doi.org/10.1080/02626667.2017.1371849
- 52. Partal T (2017) Multi-annual analysis and trends of the temperatures and precipitations in West Anatolia. J Water Clim Change. https://doi.org/10.2166/wcc.2017.109
- 53. Pathak P, Kalra A, Ahmad S, Bernardez M (2016) Wavelet-aided analysis to estimate seasonal variability and dominant periodicities in temperature, precipitation, and streamflow in the Midwestern United States. Water Resour Manag 30(13):4649–4665. https://doi.org/10.1007/s11269-016-1445-0
- 54. Peña-Angulo D, Nadal-Romero E, González-Hidalgo JC, Albaladejo J, Andreu V, Bagarello V, Campo J (2019) Spatial variability of the relationships of runoff and sediment yield with weather types throughout the Mediterranean basin. J Hydrol 571(390):405. https://doi.org/10.1016/j.jhydrol.2019.01.059
- 55. Peña-Angulo D, Vicente-Serrano SM, Domínguez-Castro F, Murphy C, Reig F, Tramblay Y et al (2020) Long-term precipitation in Southwestern Europe reveals no clear trend attributable to anthropogenic forcing. Environ Res Lett. https://doi.org/10.1088/1748-9326/ab9c4f
- 56. Philandras CM, Nastos PT, Kapsomenakis J, Douvis KC, Tselioudis G, Zerefos CS (2011) Long term precipitation trends and variability within the Mediterranean region. Nat Hazard Earth Sys 11(12):3235–3250. https://doi.org/10.5194/nhess-11-3235-2011
- 57. Piccarreta M, Pasini A, Capolongo D, Lazzari M (2013) Changes in Daily Precipitation Extremes in the Mediterranean from 1951 to 2010: The Basilicata Region. Southern Italy Int J Climatol 33(15):3229–3248. https://doi.org/10.1002/joc.3670
- 58. Rashid MM, Beecham S (2019) Characterization of meteorological droughts across South Australia. Meteorol Appl 26(4):556–568. https://doi.org/10.1002/met.1783
- 59. Rashid MM, Beecham S, Chowdhury RK (2015) Assessment of trends in point rainfall using continuous wavelet transforms. Adv Water Resour 82:1–15. https://doi.org/10.1016/j.advwatres.2015.04.006
- 60. Ruggieri E (2013) A Bayesian approach to detecting change points in climatic records. Int J Climatol 33(2):520–528. https://doi.org/10.1002/joc.3447
- 61. Ruggieri E, Antonellis M (2016) An exact approach to Bayesian sequential change point detection. Comput Stat Data An 97:71–86. https://doi.org/10.1016/j.csda.2015.11.010
- 62. Sang YF, Sun F, Singh VP, Xie P, Sun J (2018) A discrete wavelet spectrum approach for identifying non-monotonic trends in hydroclimate data. Hydrol Earth Syst Sci 22(1):757–766. https://doi.org/10.5194/hess-22-757-2018
- 63. Santos CA, Freire PK, Silva RMD, Akrami SA (2019) Hybrid wavelet neural network approach for daily inflow forecasting using tropical rainfall measuring mission data. J Hydrol Eng 24(2):04018062. https://doi.org/10.1061/%28ASCE%29HE.1943-5584.0001725
- 64. Santos CAG, Kisi O, da Silva RM et al (2018) Wavelet-based variability on streamflow at 40-year timescale in the Black Sea region of Turkey. Arab J Geosci 11:169. https://doi.org/10.1007/s12517-018-3514-6
- 65. Şen Z (2012) An innovative trend analysis methodology. ASCE J Hydrol Eng 17(9):1042–1046. https://doi.org/10.1061/(ASCE)HE.1943-5584.0000556
- 66. Shaban A, Awad M, Ghandour AJ, Telesca L (2019) A 32-year aridity analysis: a tool for better understanding on water resources management in Lebanon. Acta Geophys 67(4):1179–1189. https://doi.org/10.1007/s11600-019-00300-7
- 67. Singh VP (2018) Hydrologic modeling: progress and future directions. Geosci Lett 5:15. https://doi.org/10.1186/s40562-018-0113-z
- 68. Spinoni J, Vogt JV, Naumann G, Barbosa P, Dosio A (2018) Will drought events become more frequent and severe in Europe? Int J Climatol 38(4):1718–1736. https://doi.org/10.1002/joc.5291
- 69. Taibi S, Meddi M, Mahé G, Assani A (2017) Relationships between atmospheric circulation indices and rainfall in Northern Algeria and comparison of observed and RCM-generated rainfall. Theor Appl Climatol 127(1–2):241–257. https://doi.org/10.1007/s00704-015-1626-4
- 70. Taïbi S, Meddi M, Mahé G (2019) Seasonal rainfall variability in the southern Mediterranean border: Observations, regional model simulations and future climate projections. Atmosfera 32(1):39–54. https://doi.org/10.20937/atm.2019.32.01.04
- 71. Torrence C, Compo GP (1998) A practical guide to wavelet analysis. Bull Am Meteor Soc 79:61–78. https://doi.org/10.1175/1520
- 72. Vaseghi SV (2008) Advanced digital signal processing and noise reduction. Wiley, Hoboken
- 73. Xoplaki E, González-Rouco JF, Luterbacher J, Wanner H (2004) Wet season Mediterranean precipitation variability: influence of large-scale dynamics and trends. Climate Dyn 23(1):63–78. https://doi.org/10.1007/s00382-004-0422-0
- 74. Yu M, Ruggieri E (2019) Change point analysis of global temperature records. Int J Climatol 39(8):3679–3688. https://doi.org/10.1002/joc.6042
- 75. Zeroual A, Assani AA, Meddi M (2017) Combined analysis of temperature and rainfall variability as they relate to climate indices in northern Algeria over the 1972–2013 period. Hydrol Res 48(2):584–595. https://doi.org/10.2166/nh.2016.244
- 76. Zeroual A, Assani AA, Meddi M et al (2019) Assessment of climate change in Algeria from 1951 to 2098 using the Köppen-Geiger climate classification scheme. Clim Dyn 52:227–243. https://doi.org/10.1007/s00382-018-4128-0
- 77. Zerouali B, Mesbah M, Chettih M, Djemai M, Abda Z (2019) Hydrogeological system of Sebaou River watershed (Northern Central Algeria): an assessment of rainfall-runoff relationship. Adv Sustain Environ Hydro Hydrogeol Hydrochem Water Resour. https://doi.org/10.1007/978-3-030-01572-5_7
- 78. Zerouali B, Mesbah M, Chettih M, Djemai M (2018) Contribution of cross time-frequency analysis in assessment of possible relationships between large-scale climatic fluctuations and rainfall of northern central Algeria. Arab J Geosci 11(14):392. https://doi.org/10.1007/s12517-018-3728-7
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-2cb15ad2-64f5-457b-b01c-28e62f47070c