PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Sygnały i systemy wizyjne w modelu automatyzacji pojazdów

Treść / Zawartość
Identyfikatory
Warianty tytułu
EN
Vision signals and systems in the vehicle automation model
Języki publikacji
PL
Abstrakty
PL
W artykule przedstawiono wybrane przykłady wykorzystania sygnałów i systemów wizyjnych w odniesieniu do zaproponowanego modelu grupującego zagadnienia związane z pojazdami autonomicznymi. Model ten uwzględnia wzajemne interakcje pomiędzy pojazdem, użytkow nikiem i otoczeniem. Dodatkowo, systematyzuje on stan wiedzy dotyczący automatyzacji pojazdów na wszystkich poziomach. W niniejszej pracy model został doprecyzowany, mając na uwadze najnowocześniejsze rozwiązania z dziedziny przetwarzania obrazów i systemów wizyjnych.
EN
The article presents selected examples of the use of vision signals and systems in relation to the proposed model grouping issues related to autonomous vehicles. This model takes into account mutual interactions between the vehicle, the user, and the environment. Additionally, it sys tematizes the state of knowledge regarding vehicle automation at all levels. In this work, the model was refined, taking into account the latest solu tions in the field of image processing and vision systems.
Rocznik
Strony
208--211
Opis fizyczny
Bibliogr. 54 poz., rys.
Twórcy
  • Politechnika Poznańska, Instytut Automatyki i Robotyki, ul. Piotrowo 3a, 60-965 Poznań
  • Politechnika Poznańska, Instytut Automatyki i Robotyki, ul. Piotrowo 3a, 60-965 Poznań
  • Politechnika Poznańska, Instytut Automatyki i Robotyki, ul. Piotrowo 3a, 60-965 Poznań
Bibliografia
  • [1] González-Saavedra J. F. et al., Survey of Cooperative Advanced Driver Assistance Systems: From a Holistic and Systemic Vision, Sensors 22, no. 8: 3040, 2022, doi: 10.3390/s22083040.
  • [2] SAE International, Taxonomy and Definitions for Terms Related to Driving Automation Systems for On-Road Motor Vehicles. J3016_202104, https://www.sae.org/standards/content /j3016_202104/, 30.04.2021 (dostęp: 04.04.2024).
  • [3] Capustiac A. et al., A Human Centered Control Strategy for a Driving Simulator, Int. J. of Mechanical & Mechatronics Engineering, vol. 11, pp. 45-52, 2011.
  • [4] Balcerek J., Pawłowski P., How to combine issues related to autonomous vehicles - a proposal with a literature review, , Signal Proc. Conf.: Algorithms, Architectures, Arrangements, and Applications (SPA), Poznan, Poland, pp. 189-194, 2023, doi: 10.23919/SPA59660.2023.10274452.
  • [5] Schwarting W., Alonso-Mora J., Rus D., Planning and Decision- Making for Autonomous Vehicles, Annu. Rev. Control Robot. Auton. Syst., vol. 1, pp. 187–210, 2018.
  • [6] Boyali A., Mita S., John V., A Tutorial On Autonomous Vehicle Steering Controller Design, Simulation and Implementation, Toyota Technological Institute, 2018.
  • [7] Wagner P., Traffic Control and Traffic Management in a Transportation System with Autonomous Vehicles, In: Maurer M. et al. (eds), Autonomous Driving, Springer, Berlin, Heidelberg, 2016, doi: 10.1007/978-3-662-48847-8_15.
  • [8] Mobileye, Responsibility-Sensitive Safety. A mathematical model for automated vehicle safety. The 5 Safety Rules of RSS, https://www.mobileye.com/responsibility-sensitive-safety/ (dostęp: 04.04.2024).
  • [9] Kalra N., Paddock S. M., Driving to Safety: How Many Miles of Driving Would It Take to Demonstrate Autonomous Vehicle Reliability? RAND Corporation, RR-1478-RC, https://www.rand.org/pubs/research_reports/RR1478.html, 12.06.2016 (dostęp: 04.04.2024).
  • [10] Quirk C., Model AV testing, Washington University in St. Louis, https://samfoxschool.wustl.edu/the-school/news/734-model-avtesting, 16.10.2023 (dostęp: 04.04.2024).
  • [11] Balcerek J. et al., Vision system for automatic recognition of Polish historic vehicles, Signal Proc.: Algorithms, Architectures, Arrangements, and Applications (SPA), Poznan, Poland, pp. 167-172, 2022, doi: 10.23919/SPA53010.2022.9927937.
  • [12] Balcerek J., Pawłowski P., Trzciński B., System wizyjny do automatycznego rozpoznawania zwierząt na nagraniach z wideo rejestratorów samochodowych, Przegląd Elektrotechniczny, R. 99, nr 10, s. 278-281, 2023.
  • [13] Buscariolo F., Rosilho V., Comparative CFD Study of Outside Rearview Mirror Removal and Outside Rearview Cameras Proposals on a Current Production Car, SAE Technical Papers, 13, XXI Simpósio Internacional de Engenharia Automotiva, pp. 16-26, 2014, doi: 10.5151/engpro-simea-PAP4.
  • [14] Franke U., Gehrig S., How Cars Learned to See, Daimler AG Research & Development, Böblingen, Photogrammetric Week ‘13, Fritsch D. (Ed.) Wichmann/VDE Verlag, Belin & Offenbach, pp. 3–10, 2013.
  • [15] Balcerek J., Human-computer supporting interfaces for automatic recognition of threats, Ph.D. Dissertation, Poznań University of Technology, Supervisior: Dąbrowski A., Auxilary supervisor: Pawłowski P., Poznań 2016.
  • [16] Balcerek J. et al., Automatic recognition of image details using stereovision and 2D algorithms, Signal Proc. Conf.: Algorithms, Architectures, Arrangements, and Applications (SPA), Poznan, Poland, pp. 268-273, 2018, doi: 10.23919/SPA.2018.8563419.
  • [17] Choi, K., Jung, H. G., Suhr, J. K., Automatic Calibration of an Around View Monitor System Exploiting Lane Markings, Sensors, 18, 2956, 2018, doi: 10.3390/s18092956.
  • [18] Tseng, D.-C., Lin Y.-C., Chao T.-W., Wide-scoped Surrounding Top-view Monitor for Advanced Driver Assistance Systems, 4th Int. Conf. on Mechatronics, Materials, Chemistry and Comp. Engr. (ICMMCCE), 2015, doi: 10.2991/icmmcce-15.2015.90.
  • [19] GMC, HUMMER EV Pickup and HUMMER EV SUV, https://www.gmc.com/electric/hummer-ev (dostęp: 05.04.2024).
  • [20] Ahmed S. et al., Pedestrian and Cyclist Detection and Intent Estimation for Autonomous Vehicles: A Survey, Applied Sciences, 9, no. 11: 2335, 2019, doi: 10.3390/app9112335.
  • [21] Balcerek J. et al., Vision system for automatic recognition of selected road users, Signal Proc. Conf.: Algorithms, Architectures, Arrangements, and Applications (SPA), Poznan, Poland, pp. 155-160, 2022, doi: 10.23919/SPA53010.2022.9927954.
  • [22] Prabhu R., Viswanathan N., Automated Roadside COW Animal Detection and Collision Prevention System, Int. J. of Advanced Research in Science, Communication and Technology, pp. 145-149, 2021, doi: 10.48175/IJARSCT-2321.
  • [23] Volvo, Pedestrian, Cyclist & Large Animal Detection, https://volvo.custhelp.com/app/answers/detail/a_id/9778/~/pede strian%2C-cyclist-%26-large-animal-detection, 11.04.2019 (dostęp: 05.04.2024).
  • [24] Garg A. et al., 2019, Emergency Vehicle Detection by Autonomous Vehicle, Int. J. of Engineering Research & Technology (IJERT), vol. 08, issue 05, May 2019.
  • [25] Razalli H., Ramli R., Alkawaz M. H., Emergency Vehicle Recognition and Classification Method Using HSV Color Segmentation, 2020 16th IEEE Int. Colloquium on Signal Processing & Its Applications (CSPA), Langkawi, Malaysia, pp. 284-289, 2020, doi: 10.1109/CSPA48992.2020.9068695.
  • [26] Balcerek J. et al., Automatyczne rozpoznawanie pojazdów uprzywilejowanych, Przegląd Elektrotechniczny, R. 99, nr 10, s. 274-277, 2023.
  • [27] Raj A. et al., Vision based road surface detection for automotive systems, 2012 Int. Conf. on Applied Electronics, Pilsen, pp. 223–228, 2012.
  • [28] Nolte M., Kister N., Maurer M., Assessment of Deep Convolutional Neural Networks for Road Surface Classification, 2018 21st Int. Conf. on Intel. Transportation Systems (ITSC), Maui, HI, pp. 381–386, 2018, doi: 10.1109/ITSC.2018.8569396.
  • [29] Balcerek J. et al., Classification of road surfaces using convolutional neural network, Signal Proc. Conf.: Algorithms, Architectures, Arrangements, and Applications (SPA), Poznan, Poland, pp. 98-103, 2020, doi: 10.23919/SPA50552.2020.9241254.
  • [30] Khalifa O. et al., Vision Based Road Lane Detection System for Vehicles Guidance, Australian J. of Basic and Applied Sciences, vol. 5, pp. 728-738, 2011.
  • [31] Biswas R., Fleyeh H., Mostakim M., Detection and classification of speed limit traffic signs, World Congress on Computer Applications and Information Systems, WCCAIS, 2014, doi: 10.1109/WCCAIS.2014.6916605.
  • [32] Yoneda, K. et al., Robust Traffic Light and Arrow Detection Using Digital Map with Spatial Prior Information for Automated Driving. Sensors, 20, 1181, 2020, doi: 10.3390/s20041181.
  • [33] Balcerek J. et al., Automatic detection of traffic lights changes from red to green and car turn signals in order to improve urban traffic, Signal Proc.: Algorithms, Architectures, Arrangements, and Applications (SPA), Poznan, Poland, pp. 110-115, 2014.
  • [34] Janjua J. I. et al., Li-Fi Communications in Smart Cities for Truly Connected Vehicles, 2nd Int. Conf. On Smart Cities, Automation & Intelligent Computing Systems (ICON-SONICS), Tangerang, Indonesia, 2021, pp. 1-6, doi: 10.1109/ICONSONICS53103.2021.9617200.
  • [35] Mercedes-Benz Group AG., Digital Light. The light of the future hits the road, https://group.mercedes-benz.com/innovation/ specials/geneva-2018/digital-light.html (dostęp: 06.04.2024).
  • [36] Škoda Auto a.s. 2024, Future pedestrians may be assisted by robots and smart grilles, https://www.skoda-storyboard.com/ en/skoda-world/future-pedestrians-may-be-assisted-by-robotsand- smart-grilles/, 02.03.2023 (dostęp: 06.04.2024).
  • [37] Samsung Newsroom, The Safety Truck Could Revolutionize Road Safety, Samsung, https://news.samsung.com/global/thesafety- truck-could-revolutionize-road-safety, 18.06.2015 (dostęp: 06.04.2024).
  • [38] Powerstar Trucks, Isuzu outdoor display led advertising truck, https://www.isuzutruckscn.com/isuzu-outdoor-display-ledadvertising- truck_p629.html (dostęp: 06.04.2024).
  • [39] Tomanek Ł., Wyświetlacz na kołach motocykla, Ścigacz.pl, https://www.scigacz.pl/Wyswietlacz,na,kolach,motocykla,22169 .html, 21.11.2013 (dostęp: 06.04.2024).
  • [40] Grabowski P., Cyfrowe tablice rejestracyjne to moje nowe marzenie. Przyszłość jest teraz, boomerzy, Autoblog, Spider’s Web, https://spidersweb.pl/autoblog/cyfrowe-tablicerejestracyjne- legalne/, 13.06.2022 (dostęp: 06.04.2024).
  • [41] Stasik P. M., Balcerek J., Extensible Implementation of Reliable Pixel Art Interpolation, Foundations of Computing and Decision Sciences, vol. 44, no. 2, pp. 213-239, 2019.
  • [42] Woodford C., Thermochromic color-changing materials, Explain that Stuff, https://www.explainthatstuff.com/thermochromicmaterials. html, 30.06.2023 (dostęp: 06.04.2024).
  • [43] Edmund Optics, Multifunctional Smart Glass. The First Generation of Smart Glass: Electrochromic Glass, https://www.edmund optics.es/knowledge-center/trending-in-optics/multifunctionalsmart- glass/, 06.2019 (dostęp: 06.04.2024).
  • [44] Oliveira L. et al., Evaluating How Interfaces Influence the User Interaction with Fully Autonomous Vehicles, pp. 320-331, 2018, doi: 10.1145/3239060.3239065.
  • [45] Oh H. J., Ko S. M., Ji Y. G., Effects of Superimposition of a Head-Up Display on Driving Performance and Glance Behavior in the Elderly, Int. J. of Human-Computer Interaction, vol. 32, pp. 143–154, 2016, doi: 10.1080/10447318.2015.1104155.
  • [46] Lee J. et al., Automotive augmented reality 3D head-up display based on light-field rendering with eye-tracking, Opt. Express, vol. 28, issue 20, pp. 29788-29804, 2020, doi: 10.1364/OE.404318.
  • [47] Pawłowski P. et al., Visualization techniques to support CCTV operators of smart city services, Multimed. Tools Appl., vol. 79, s. 21095-21127, 2020, doi: 10.1007/s11042-020-08895-6.
  • [48] Jacob Y. et al., Hand gesture recognition for driver vehicle interaction, IEEE Computer Society Workshop on Observing and understanding hands in action (Hands 2015) of 28th IEEE conf. on Computer Vision and Pattern Recognition (CVPR’2015), Boston, United States, 06.2015, HAL Id: hal-01256263.
  • [49] Hassib M. et al., Detecting and Influencing Driver Emotions Using Psycho-Physiological Sensors and Ambient Light, In book: Human-Computer Interaction – INTERACT 2019, pp.721-742, 2019, doi: 10.1007/978-3-030-29381-9_43.
  • [50] Noroozi F. et al., Survey on Emotional Body Gesture Recognition, in IEEE T. Affect. Comput. Journal, vol. 12, no. 2, pp. 505- 523, 1 April-June 2021, doi: 10.1109/TAFFC.2018.2874986.
  • [51] Arteo produkcja, Czym jest personalizacja auta?, http://www.reklamanapojazdach.com.pl/p0XjStKLf.html, Arteo design & production, GDP Interaktywna (dostęp: 06.04.2024).
  • [52] Balcerek J. et al., Vision-based mobile application for supporting the user in the vehicle operation Signal Proc.: Algorithms, Architectures, Arrangements, and Applications (SPA), Poznan, Poland, pp. 250-255, 2019, doi: 10.23919/SPA.2019.8936754.
  • [53] Balcerek J. et al., Automatyczne rozpoznawanie parametrów kół pojazdu, Przegląd Elektrotechniczny, R. 98, nr 9, s. 205- 208, 2022.
  • [54] Dziennik Urzędowy Unii Europejskiej, Rozporządzenie Parlamentu Europejskiego i Rady (UE) 2019/2144 z dnia 27 listopada 2019 r. (…), Dz.U. L 325 z 16.12.2019, p. 1–40, 2019.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki i promocja sportu (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-2cae7326-e83f-46de-8e64-0a1eaab8db48
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.