PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

A crystal plasticity finite element-based approach to model the constitutive behavior of multi-phase steels

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Steels are the most commonly used multi-phase materials in the industry, and their mechanical behaviors depend on the microstructure, composition, and phase fractions. Generally, the material behaviors need to be measured by experiments like a tensile test or split Hopkinson bar test, which is very time-consuming and expensive. Once the heat treatment and phase fractions are changed, it needs to be tested again, and, to avoid this, a better method is required to obtain the material behavior quickly and easily. In this study, a novel multi-scale approach is described to predict the material behaviors of multi-phase steels based on the phase fractions. A crystal plasticity finite element method is used to obtain the material behavior of each phase at a micro-scale with elevated strain rates, which is validated with experimental data or theoretical models at static or quasi-static conditions. Then a homogenization procedure with the rule of mixture method, which is based on the phase fractions measured from the microstructure characterization, is used to get the macro-scale constitutive behavior, and it is then implemented into the commercial software Abaqus/Standard to simulate the process of tensile test and compared with the experimental data. Good agreements are obtained between simulation and experimental results.
Rocznik
Strony
707--720
Opis fizyczny
Bibliogr. 39 poz., tab., wykr.
Twórcy
  • State Key Laboratory for Manufacturing System Engineering, Xi’an Jiaotong University, Xi’an 710054, People’s Republic of China
  • School of Mechanical Engineering, Purdue University, West Lafayette, IN 47907, USA
autor
  • School of Mechanical Engineering, Purdue University, West Lafayette, IN 47907, USA
Bibliografia
  • [1] Rashid MS. GM 980X-A unique high strength sheet steel with superior formability. SAE Trans.1976;85:938–49.
  • [2] Huh H, Kim S-B, Song J-H, Lim J-H. Dynamic tensile characteristics of TRIP-type and DP-type steel sheets for an auto-body. Int J Mech Sci. 2008;50:918–31.
  • [3] Yu H, Guo Y, Lai X. Rate-dependent behavior and constitutive model of DP600 steel at strain rate from 10–4 to 103 S−1. Mater Des. 2009;30:2501–5.
  • [4] Johnson GR. A constitutive model and data for materials subjected to large strains, high strain rates, and high temperatures. In: Proceedings of 7th information symposium ballistics. 1983, pp 541–547.
  • [5] Johnson GR, Cook WH. Fracture characteristics of three metals subjected to various strains, strain rates, temperatures and pressures. Eng Fract Mech. 1985;21:31–48.
  • [6] Zerilli FJ, Armstrong RW. Dislocation-mechanics-based constitutive relations for material dynamics calculations. J Appl Phys. 1987;61:1816–25.
  • [7] Jaspers S, Dautzenberg JH. Material behaviour in conditions similar to metal cutting: flow stress in the primary shear zone. J Mater Process Technol. 2002;122:322–30.
  • [8] Liu X, Athanasiou CE, Padture NP, Sheldon BW, Gao H. A machine learning approach to fracture mechanics problems. Acta Mater. 2020;190:105–12. https:// doi. org/ 10. 1016/j. actam at. 2020. 03. 016.
  • [9] Shen C, Wang C, Wei X, Li Y, van der Zwaag S, Xu W. Physical metallurgy-guided machine learning and artificial intelligent design of ultrahigh-strength stainless steel. Acta Mater. 2019;179:201–14. https:// doi. org/ 10. 1016/j. actam at. 2019. 08. 033.
  • [10] Wen C, Zhang Y, Wang C, Xue D, Bai Y, Antonov S, Dai L, Lookman T, Su Y. Machine learning assisted design of high entropy alloys with desired property. Acta Mater. 2019;170:109–17. https:// doi. org/ 10. 1016/j. actam at. 2019. 03. 010.
  • [11] Rodriguez R, Gutierrez I. Mechanical behaviour of steels with mixed microstructures. Proceeding of TMP. 2004;4:356–63.
  • [12] Kadkhodapour J, Anbarlooie B, Hosseini-Toudeshky H, Schmauder S. Simulation of shear failure in dual phase steels using localization criteria and experimental observation. Comput Mater Sci. 2014;94:106–13. https:// doi. org/ 10. 1016/j. comma tsci. 2014. 02. 046.
  • [13] Anbarlooie B, Hosseini-Toudeshky H, Kadkhodapour J. High Cycle Fatigue micromechanical behavior of dual phase steel: damage initiation, propagation and final failure. Mech Mater. 2017;106:8–19. https:// doi. org/ 10. 1016/j. mechm at. 2017. 01. 002.
  • [14] Qayyum F, Guk S, Kawalla R, Prahl U. Experimental investigations and multiscale modeling to study the effect of sulfur content on formability of 16MnCr5 alloy steel. Steel Res Int. 2019;90:1800369. https:// doi. org/ 10. 1002/ srin. 20180 0369.
  • [15] Qayyum F, Guk S, Schmidtchen M, Kawalla R, Prahl U. Modeling the local deformation and transformation behavior of cast X8CrMnNi16-6-6 TRIP steel and 10% Mg-PSZ composite using a continuum mechanics-based crystal plasticity model. Curr Comput Aided Drug Des. 2020;10:221. https:// doi. org/ 10. 3390/ cryst 10030 221.
  • [16] Qayyum F, Chaudhry AA, Guk S, Schmidtchen M, Kawalla R, Prahl U. Effect of 3D representative volume element (RVE) thickness on stress and strain partitioning in crystal plasticity simulations of multi-phase materials. Curr Comput-Aided Drug Des. 2020;10:944. https:// doi. org/ 10. 3390/ cryst 10100 944.
  • [17] Kadkhodapour J, Butz A, Ziaei-Rad S, Schmauder S. A Micromechanical study on failure initiation of dual phase steels under tension using single crystal plasticity model. Int J Plast. 2011;27:1103–25. https:// doi. org/ 10. 1016/j. ijplas. 2010. 12. 001.
  • [18] Roters F, Eisenlohr P, Hantcherli L, Tjahjanto DD, Bieler TR, Raabe D. Overview of constitutive laws, kinematics, homogenization and multiscale methods in crystal plasticity finite-element modeling: theory, experiments, applications. Acta Mater. 2010;58:1152–211. https:// doi. org/ 10. 1016/j. actam at. 2009. 10. 058.
  • [19] Jia N, Eisenlohr P, Roters F, Raabe D, Zhao X. Orientation dependence of shear banding in face-centered-cubic single crystals. Acta Mater. 2012;60:3415–34.
  • [20] Steinmetz DR, Jäpel T, Wietbrock B, Eisenlohr P, Gutierrez-Urrutia I, Saeed-Akbari A, Hickel T, Roters F, Raabe D. Revealing the strain-hardening behavior of twinning-induced plasticity steels: theory, simulations, experiments. Acta Mater. 2013;61:494–510.
  • [21] Shen YF, Jia N, Wang YD, Sun X, Zuo L, Raabe D. Suppression of twinning and phase transformation in an ultrafine grained 2 GPa strong metastable austenitic steel: experiment and simulation. Acta Mater. 2015;97:305–15.
  • [22] Wong SL, Madivala M, Prahl U, Roters F, Raabe D. A Crystal plasticity model for twinning-and transformation-induced plasticity. Acta Mater. 2016;118:140–51.
  • [23] Sankaran S, Sarma VS, Padmanabhan KA. Low cycle fatigue behavior of a multiphase microalloyed medium carbon steel: comparison between ferrite–pearlite and quenched and tempered microstructures. Mater Sci Eng A. 2003;345:328–35.
  • [24] Sodjit S, Uthaisangsuk V. Microstructure based prediction of strain hardening behavior of dual phase steels. Mater Des. 2012;41:370–9.
  • [25] Woo W, Em VT, Kim E-Y, Han SH, Han YS, Choi S-H. Stressstrain relationship between ferrite and martensite in a dual-phase steel studied by in situ neutron diffraction and crystal plasticity theories. Acta Mater. 2012;60:6972–81.
  • [26] Poshadel AC, Gharghouri MA, Dawson PR. Initiation and propagation of plastic yielding in duplex stainless steel. Metall Mat Trans A. 2019;50:1202–30. https:// doi. org/ 10. 1007/ s11661- 018- 5009-1.
  • [27] Poshadel AC, Gharghouri MA, Dawson PR. Sensitivity of crystal stress distributions to the definition of virtual two-phase samples. Metall Mat Trans A. 2019;50:1231–49. https:// doi. org/ 10. 1007/ s11661- 018- 5085-2.
  • [28] Mahajan S, Chin GY. Formation of deformation twins in fcc crystals. Acta Metall. 1973;21:1353–63.
  • [29] Roters F, Diehl M, Shanthraj P, Eisenlohr P, Reuber C, Wong SL, Maiti T, Ebrahimi A, Hochrainer T, Fabritius H-O. DAMASK-the Düsseldorf advanced material simulation kit for modeling multi-physics crystal plasticity, thermal, and damage phenomena from the single crystal up to the component scale. Comput Mater Sci. 2019;158:420–78.
  • [30] Iwamoto T. Multiscale computational simulation of deformation behavior of TRIP steel with growth of martensitic particles in unit cell by asymptotic homogenization method. Int J Plast. 2004;20:841–69.
  • [31] Al-Abbasi FM. Micromechanical modeling of ferrite-pearlite steels. Mater Sci Eng A. 2010;527:6904–16.
  • [32] Committee AIH ASM handbook: heat treating, vol. 4. ASM International, 1991.
  • [33] Totik Y. The corrosion behaviour of manganese phosphate coatings applied to AISI 4140 steel subjected to different heat treatments. Surf Coat Technol. 2006;200:2711–7.
  • [34] Bailey NS, Tan W, Shin YC. Predictive modeling and experimental results for residual stresses in laser hardening of AISI 4140 steel by a high power diode laser. Surf Coat Technol. 2009;203:2003–12.
  • [35] Umbrello D, Jayal AD, Caruso S, Dillon OW, Jawahir IS. Modeling of white and dark layer formation in hard machining of AISI 52100 bearing steel. Mach Sci Technol. 2010;14:128–47.
  • [36] Ding H, Shin YC. A metallo-thermomechanically coupled analysis of orthogonal cutting of AISI 1045 steel. J Manuf Sci Eng. 2012;134:051014.
  • [37] Rana AK, Paul SK, Dey PP. Effect of martensite volume fraction on cyclic plastic deformation behavior of dual phase steel: micromechanics simulation study. J Market Res. 2019;8:3705–12. https:// doi. org/ 10. 1016/j. jmrt. 2019. 06. 022.
  • [38] Yang D, Liu Z. Quantification of microstructural features and prediction of mechanical properties of a dual-phase Ti-6Al-4V Alloy. Materials. 2016;9:628.
  • [39] Ding H, Shin YC. Multi-physics modeling and simulations of surface microstructure alteration in hard turning. J Mater Process Technol. 2013;213:877–86. https:// doi. org/ 10. 1016/j. jmatp rotec. 2012. 12. 016.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-2cade8d6-d66b-4082-a941-c13bbbc52c0f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.