PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The Structure Analysis of Secondary (Recycled) AlSi9Cu3 Cast Alloy with and without Heat Treatment

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Al-Si alloys are very universal materials, comprising of from 85% to 90% of the aluminium cast parts produced for the automotive industry (e.g. various motor mounts, engine parts, cylinder heads, pistons, valve retainer, compressor parts, etc.). Production of primary Al- alloys belong to heavy source fouling of life environs. Care of environment of aluminium is connected to the decreasing consumption of resource as energy, materials, water, and soil, and with an increase in recycling and extension life of products in industry. Recycled (secondary) aluminium alloys are made out of Al-scrap and workable Al-garbage by recycling. The automotive casts from aluminium alloys are heat treated for achieving better properties. Al-Si alloys contain more addition elements, that form various intermetallic phases in the structure. They usually contain a certain amount of Fe, Mn, Mg, and Zn that are present either unintentionally, or they are added deliberately to provide special material properties. These elements partly go into the solid solution in the matrix and partly form intermetallic particles during solidification which affect the mechanical properties. Controlling the microstructure of secondary aluminium cast alloy is therefore very important.
Rocznik
Strony
197--218
Opis fizyczny
Bibliogr. 32 poz., rys., wykr.
Twórcy
  • University of Žilina Faculty of Mechanical Engineering, Department of Material Engineering
autor
  • University of Žilina Faculty of Mechanical Engineering, Department of Material Engineering
  • University of Žilina Faculty of Mechanical Engineering, Department of Material Engineering
Bibliografia
  • 1. Miller W.S., Zhuang L., Bottema J. et al., Recent development in aluminium alloys for the automotive industry, Materials Science and Engineering, A 280, 37–49, 2000.
  • 2. Senčáková L., Virčǐková E., Life cycle assessment of primary aluminium production, Acta Metallurgica Slovaca, 13, 3, 412–419, 2007.
  • 3. Das K.S., Designing Aluminum Alloys for a Recycling Friendly World, Materials Science Forum, 519–521, 1239–1244, 2006.
  • 4. Michna Š., Lukáč I., Očenášek V., Kořeny R., Drápala J., Schneider H., Miškufová A., Encyclopedia of aluminium [in Czech: Encyklopedia hliniku], Adin, s.r.o. Prešov – Slovakia, 2005.
  • 5. Tillová E., Chalupová M., Structural analysis of Al-Si cast alloys, EDIS Žilina, Ž
  • 6. Seifeddine S., The influence of Fe on the microstructure and mechanical properties of cast Al-Si alloys, Literature review – Vilmer project, J¨onk¨oping University, Sweden, 2007.
  • 7. Shabestari S.G., The effect of iron and manganese on the formation of intermetallic compounds in aluminum-silicon alloys, Materials Science and Engineering A, 383, 289– 298, 2004.
  • 8. Samuel A.M., Samuel F.H., Effect of alloying elements and dendrite arm spacing on the microstructure and hardness of an Al-Si-Cu-Mg-Fe-Mn (380) aluminium die-casting alloy, Journal of Materials Science, 30, 1698–1708, 1995.
  • 9. Samuel A.M., Samuel F.H., Doty H.W., Observations on the formation of _-AlFeSi phase in 319 type Al-Si alloys, Journal of Materials Science, 31, 5529–5539, 1996.
  • 10. Tillov´a E., Chalupov´a M., Hurtalov´a L., Evolution of the Fe-rich phases in recycled AlSi9Cu3 cast alloy during solution treatment, Communications – Scientific letters of the university of Žilina, 12, 4, 95–101, 2010.
  • 11. Taylor J.A., The effect of iron in Al-Si casting alloys, 35th Australian Foundry Institute National Conference, Adelaide, South Australia, 148–157, 2004.
  • 12. Seifedine S., Johansson S., Svensson I., The influence of cooling rate and manganese content on the _-Al5FeSi phase formation and mechanical properties of Al-Si – based alloys, Materials Science and Engineering A, 490, 385–390, 2008.
  • 13. Moustafa M.A., Effect of iron content on the formation of s-Al5FeSi and porosity in Al-Si eutectic alloys, Journal of Materials Processing Technology, 209, 605–610, 2009.
  • 14. Rios C.T., Caram R., Intermetallic compounds in the Al-Si-Cu system, Acta Microscopica, 12, 1, 77–81, 2003.
  • 15. Hurtalová L. et al., Changes in structural characteristics of hypoeutectic al-Si cast alloy after age hardening, Materials science (Medžiagotyra), 18, 3, 228–233, 2012.
  • 16. Tillová E., Chalupová M., Hurtalová L., Evolution of phases in a recycled Al-Si cast alloy during solution treatment, The Scaning Electron Microscope, INTECH, 411–438, 2011.
  • 17. Bäckerud L., Chai G., Tamminen J., Solidification Characteristics of Aluminum Alloys, Vol. 2, AFS, 1992.
  • 18. www.honsel.com/uploads/media/Handbuch Gusswerkstoffe.pdf, 12.11.2010, 12:32.
  • 19. www.krdiecasting.com/pdf/Sect3.pdf, 13.01.2011, 14:22.
  • 20. Boileau M.J., Allison J.E., The effect of solution time and heat treatment on the fatigue properties of a cast 319 aluminium alloy, Metallurgical and materials transactions A, 34A, 1807–1820, 2003.
  • 21. Li R., Solution heat treatment of 354 and 355 cast alloys, AFS Transaction, 26, 777–783, 1996.
  • 22. Ma Z. et al., Influence of aging treatments and alloying additives on the hardness of Al-11Si-2.5Cu-Mg alloys, Materials and Design, 31, 3791–3803, 2010.
  • 23. Lu L., Dahle A.K., Iron-Rich Intermetallic Phases and Their Role in Casting Defect Formation in Hypoeutectic Al-Si Alloys, Metallurgical and Transactions A, Žilina, Slovakia, 2009 (in Slovak).
  • 24. Kral M.V., A crystallographic identification of intermetallic phases in Al-Si alloys, Materials Letters, 1–6, 2005.
  • 25. Caceres C.H., Svenson I.L., Taylor J.A., Strenght-ductility Behaviour of Al-Si-Cu-Mg Casting Alloys in T6 temper, Int. J. Cast Metals Res., 15, 531–543, 2003.
  • 26. Yi J.Z., Gao X.Y., Lee P.D., Lindley T.C., Effect of Fe-content on fatigue crack initiation and propagation in a cast aluminium - silicon alloy (A356-T6), Materials Science and Engineering, A 386, 396–407, 2004.
  • 27. Ma Z., Samuel A.M., Samuel F.H., Doty H.W., Valtierra S., A study of tensile properties in Al-Si-Cu and Al-Si-Mg alloys: Effect of -iron intermetallics and porosity, Materials Science and Engineering A, 490, 36–51, 2008.
  • 28. Dobrzański L.A., Borek W., Maniara R., Influence of the crystallization condition on Al-Si-Cu casting alloys structure, Jamme, 18, 1–2, 211–214, 2006.
  • 29. Hurtalová L., Tillov´a E., Chalupová M., Cu-rich intermetallic phases in recycled AlSi9Cu3 cast alloy – a comparison between aging behavior in T4 and T6 treatments, Perners contacts – Electronical Technical Journal of Technology, Engineering and Logistic in Transport, VI, 2, 72–80, 2011.
  • 30. Hurtalová L., Tillová E., Dissolution and melting of Al2Cu phase particles in recycled AlSi9Cu3 cast alloy, Materials Engineering, XVI, 3a, 110–115, 2009.
  • 31. Tillová E., Hurtalová L., Chalupová M., Evolution of Cu-rich phases during solution treatment, 26th Danubia-Adria symposium on Advances in Experimental Mechanics, Montanuniversität Leoben-Austria, 231–232, 2009.
  • 32. Samuel F.H., Incipient melting of Al5Mg8Si6Cu2and Al2Cu intermetallics in unmodified and strontium-modified Al-Si-Cu-Mg (319) alloys during solution heat treatment, Journal of Materials Science, 33, 2283–2297, 1998.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-2cab278e-ea8c-4b5d-aa3e-6a144ed03d3a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.