PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Dispersion of Rayleigh Waves in a Microstructural Couple Stress Substrate Loaded with Liquid Layer Under the Effects of Gravity

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Bone loss is one of the serious health issues in bedridden patients or young generation due to lack of physical activities. Mechanical forces are exerted on the bones through ground reaction forces, liquid loadings and by other contraction activities of the muscles. We are assuming an isotropic half-space with mechanical properties equivalent to that of bone exhibiting microstructures. Consistent couple stress theory introduces an additional material parameter called characteristic length which accounts for inner microstructure of the material. Dispersion relations for leaky Rayleigh waves are derived by considering a model consisting of couple stress half space under the effects of gravity and loaded with inviscid liquid layer of finite thickness or a liquid half space. Impact of the gravity, liquid loadings and microstructures of the material are investigated on propagation of leaky Rayleigh type waves. Phase velocity of leaky Rayleigh waves is studied for five different values of characteristic length parameter which are of the order of internal cell size of the considered material. Variations in phase velocity of leaky Rayleigh waves are also studied under the effect of gravity parameter and thickness of liquid loadings.
Rocznik
Strony
11--20
Opis fizyczny
Bibliogr. 34 poz., rys., tab., wykr.
Twórcy
autor
  • Department of Mathematics, Lovely Professional University, Phagwara, Punjab, 144411, India
autor
  • School of Mathematics, Thapar University, Patiala, Punjab, 147004, India
Bibliografia
  • 1. Bhattacharyya S., De S. N. (1977), Surface waves in viscoelastic media under the influence of gravity, Australian Journal of Physics, 30, 347-353.
  • 2. Bromwich T. J. I’A. (1898), On the influence of gravity on elastic waves, and, in particular, on the vibrations of elastic globe, Proceedings of the London Mathematical Society, 30, 98-120.
  • 3. Cosserat E., Cosserat F. (1909), Theory of deformable bodies [in French: Théorie des corps déformables], A. Hermann et Fils, Paris.
  • 4. Danicki E. (2010), Rayleigh Waves in an isotropic Body with Deep Periodic Grooves, Archives of Acoustics, 35, 1, 67-74.
  • 5. Das T. K., Sengupta P. R., Debnath L. (1991), Thermo-visco-elastic Rayleigh waves under the influence of couple stress and gravity, International Journal of Mathematics and Mathematical Sciences, 14, 3, 553-560.
  • 6. Eringen A. C. (1968), Theory of micropolar elasticity, [in:] Liebowitz H. (Ed.), Fracture, vol. 2, Academic Press, New York, pp. 662-729.
  • 7. Georgiadis H. G., Vardoulakis I., Velgaki E. G. (2004), Dispersive Rayleigh-wave propagation in microstructured solids characterized by dipolar gradient elasticity, Journal of Elasticity, 74, 17-45.
  • 8. Georgiadis H. G., Velgaki E. G. (2003), Highfrequency Rayleigh waves in materials with microstructure and couple-stress effects, International Journal of Solids and Structures, 40, 2501-2520.
  • 9. Hadjesfandiari A. R., Dargush G. F. (2011), Couple stress theory for solids, International Journal of Solids and Structures, 48, 2496-2510.
  • 10. Kakar R., Kakar S. (2014), Electro-magnetothermoelastic surface waves in non-homogeneous orthotropic granular half space, Geomechanics and Engineering, 7, 1, 1-36.
  • 11. Kaur T., Sharma S. K., Singh A. K. (2016), Effect of reinforcement, gravity and liquid loading on Rayleightype wave propagation, Meccanica, 51, 10, 2449-2458.
  • 12. Kocaturk T., Akbas S. D. (2013), Wave propagation in a microbeam based on the modified couple stress theory, Structural Engineering and mechanics, 46, 3, 417-431.
  • 13. Koiter W. T. (1964), Couple stresses in the theory of elasticity, I and II, Koninklijke Nederlandse Akademie van Wetenschappen, Series B, 67, 17-44.
  • 14. Kumar R., Ahuja S., Garg S. K. (2014), Rayleigh waves in isotropic microstretch thermoelastic diffusion solid half space, Latin American Journal of Solids and Structures, 11, 299-319.
  • 15. Lakes R. S. (1991), Experimental micro mechanics methods for conventional and negative poisson’s ratio cellular solids as cosserat continua, Journal of Engineering Materials and Technology, 113, 148-155.
  • 16. Love A. E. H. (1911), Some problems of geodynamics, Cambridge University Press, London.
  • 17. Mindlin R. D., Tiersten H. F. (1962), Effects of couple-stresses in linear elasticity, Archive for Rational Mechanics and Analysis, 11, 415-448.
  • 18. Nowacki W. (1974), Micropolar Elasticity, International Center for Mechanical Sciences, Courses and Lectures No. 151, Udine, Springer-Verlag, Wien–New York.
  • 19. Plona T. J., Behravesh M., Mayer W. G. (1975), Rayleigh and Lamb waves at liquid-solid boundaries, Ultrasonics,13, 171-174.
  • 20. Qi Q. (1994), Attenuated leaky Lamb waves, Journal of Acoustical Society of America, 95, 3222-3231.
  • 21. Sengupta P. R., Benerji D. K. (1978), Effects of couple-stresses on propagation of waves in an elastic layer immersed in an infinite liquid, International Journal of Pure and Applied Mathematics, 9, 17-28.
  • 22. Sengupta P. R., Ghosh B. (1974a), Effects of couple stresses on the surface waves in elastic media, Gerlands Beitrage zur Geophysik, Leipzig, 83, 309-318.
  • 23. Sengupta P. R., Ghosh B. (1974b), Effects of couple stresses on the propagation of waves in an elastic layer, Pure and Applied Geophysics, 112, 331-338.
  • 24. Sharma J. N., Kumar S., Sharma Y. D. (2008), Propagation of Rayleigh surface waves in microstretch thermoelastic continua under inviscid fluid loadings, Journal of Thermal Stresses, 31, 18-39.
  • 25. Sharma V., Kumar S. (2014), Velocity dispersion in an elastic plate with microstructure: effects of characteristic length in a couple stress model, Meccanica, 49, 1083-1090.
  • 26. Sharma V., Kumar S. (2017), Effects of microstructure and liquid loading on velocity dispersion of leaky Rayleigh waves at liquid-solid interface, Canadian Journal of Physics, doi: https://doi.org/10.1139/cjp-2016-0343.
  • 27. Tanuma K., Man C. S., Chen Y. (2015), Dispersion of Rayleigh waves in weakly anisotropic media with vertically-inhomogeneous initial stress, International Journal of Engineering Science, 92, 63-82.
  • 28. Toupin R. A. (1962), Elastic materials with couplestresses, Archive for Rational Mechanics and Analysis, 11, 385-414.
  • 29. Vavva M. G., Gergidis L. N., Protopappas V. C., Charalambopoulos A., Polyzos D., Fotiadis D. I. (2014), A study on Rayleigh wave dispersion in bone according to Mindlin’s Form II gradient elasticity, Journal of the Acoustical Society of America, 135, 5, 3117-3126.
  • 30. Vavva M. G., Protopappas V. C., Gergidis L. N., Charalambopoulos A., Fotiadis D. I., Polyzos D. (2009), Velocity dispersion of guided waves propagating in a free gradient elastic plates: application to cortical bone, Journal of the Acoustical Society of America, 125, 5, 3414-3427.
  • 31. Vinh P. C., Anh V. T. N, Thanh V. P. (2014), Rayleigh waves in an isotropic elastic half-space coated by a thin isotropic elastic layer with smooth contact, Wave Motion, 51, 496-504.
  • 32. Voigt W. (1887), Theoretical studies on the elasticity relationships of crystals [in German: Theoretische Studien über die Elastizitätsverhältnisse der Kristalle], Abhandlungen der Gesellschaft der Wissenschaften zu Göttingen, 34.
  • 33. Yang F., Chong A. C. M., Lam D. C. C., Tong P. (2002), Couple stress based strain gradient theory for elasticity, International Journal of Solids and Structures, 39, 2731-2743.
  • 34. Zhu J., Popovics J. S., Schubert F. (2004), Leaky Rayleigh and Scholte waves at the fluid-solid interface subjected to transient point loading, Journal of Acoustical Society of America, 116, 4, 2101-2110.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-2ca95b7f-d457-4c93-9773-8945389df0c1
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.