PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Synthesis, Crystal Structure, and Properties of a Novel, Highly Sensitive Energetic, Coordination Compound: Iron (II) Carbohydrazide Perchlorate

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
A single crystal of iron (II) carbohydrazide perchlorate [FeII (CHZ)3](ClO4)2 (FeCP), a novel, lead-free, energetic coordination compound, was synthesized and its structure determined by X-ray single crystal diffraction for the frst time. The crystal belongs to the monoclinic system P2(1)/n space group, with a = 1.0066(2) nm, b = 0.8458(2) nm, c = 2.1194(4) nm, β = 100.693(3)° and Z = 4. The central Fe(II) ion is coordinated to three bidentate carbohydrazide units through the carbonyl oxygen atom and an amino nitrogen atom, forming a six-coordinated, non-centrosymmetric complex cation. The thermal analyses by differential scanning calorimetry and thermogravimetry show that the onset temperature of thermal decomposition (152.7 °C) and the critical temperature of thermal explosion of FeCP (161.2 °C) are both much lower than those of other transition metal carbohydrazide perchlorate compounds, and also those of some other primary explosives in service. FeCP has a high enthalpy of combustion, as measured by oxygen bomb calorimetry. The impact, friction and fame sensitivity tests indicate that FeCP is extremely sensitive and hazardous. Unexpected explosions occurred even during the operational processes. In order to explore the intrinsic cause of these explosions, theoretical calculations of the orbital energies were performed based on DTF. These results reveal that the impact sensitivity is positively correlated with the energy gap between HOMO and LUMO: the smaller energy gap results in the higher impact sensitivity.
Rocznik
Strony
17--36
Opis fizyczny
Bibliogr. 58 poz., rys, tab.
Twórcy
autor
  • State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology, Beijing 100081, China
autor
  • State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology, Beijing 100081, China
autor
  • State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology, Beijing 100081, China
autor
  • State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology, Beijing 100081, China
autor
  • State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology, Beijing 100081, China
autor
  • State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology, Beijing 100081, China
autor
  • State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology, Beijing 100081, China
Bibliografia
  • [1] Wu D., Zheng P., Chang P.R., Ma X., Preparation and Characterization of Magnetic Rectorite/Iron Oxide Nanocomposites and Its Application for the Removal of the Dyes, Chem. Eng. J., 2011, 174, 489-494.
  • [2] Vinita M., Dorathi R.P.J., Palanivelu K., Degradation of 2,4,6-Trichlorophenol by Photo Fenton’s Like Method Using Nano Heterogeneous Catalytic Ferric Ion, Sol. Energy, 2010, 84, 1613-1618.
  • [3] Wei H., Insin N., Lee J., Han H.-S., Cordero J.M., Liu W., Bawendi M.G., Compact Zwitterion-Coated Iron Oxide Nanoparticles for Biological Applications, Nano Lett., 2012, 12, 22-25.
  • [4] Costo R., Bello V., Robic C., Port M., Marco J.F., Puerto Morales M., Veintemillas-Verdaguer S., Ultrasmall Iron Oxide Nanoparticles for Biomedical Applications: Improving the Colloidal and Magnetic Properties, Langmuir, 2012, 28, 178-185.
  • [5] Grimes C.N., Giori L., Fry M.M., Role of Hepcidin in Iron Metabolism and Potential Clinical Applications, The Veterinary Clinics of North America. Small Animal Pract., 2012, 42, 85-96.
  • [6] Okoli C., Fornara A., Qin J., Toprak M.S., Dalhammar G., Muhammed M., Rajarao G.K., Characterization of Superparamagnetic Iron Oxide Nanoparticles and Its Application in Protein Purifcation, J. Nanosci. Nanotechno., 2011, 11, 10201-10206.
  • [7] Okoli C., Boutonnet M., Mariey L., Jaras S., Rajarao G., Application of Magnetic Iron Oxide Nanoparticles Prepared from Microemulsions for Protein Purifcation, J. Chem. Techno. Biotechno., 2011, 86, 1386-1393.
  • [8] Huynh M.H.V., Hiskey M.A., Meyer T.J., Wetzler M., Green Primaries: Environmentally Friendly Energetic Complexes, P. Nat. Acad. Sci., 2006, 103, 5409-5412.
  • [9] Huynh M.H.V., Coburn M.D., Meyer T.J., Wetzler M., Green Primary Explosives: 5-Nitrotetrazolato-N2-ferrate Hierarchies, P. Nat. Acad. Sci., 2006,103, 10322-10327.
  • [10] Klapötke T.M., Steinhauser G., “Green” Pyrotechnics: a Chemists’ Challenge, Angew. Chem. Int. Ed., 2008, 47, 3330-3347.
  • [11] Talawar M.B., Sivabalan R., Mukundan T., Muthurajan H., Sikder A.K., Gandhe B.R., Rao A.S., Environmentally Compatible Next Generation Green Energetic Materials (GEMs), J. Hazard. Mater., 2009, 161, 589-607.
  • [12] Sinditskii V.P., Fogelzang A.E., Dutov M.D., Sokol V.I., Serushkin V.V., Svetlov B.S., Poraikoshits M.A., Structure of Complex-Compounds of Metal Chlorides, Sulfates, Nitrates and Perchlorates with Carbohydrazine, Zhurnal Neorganicheskoi Khimii, 1987, 32, 1944-1949.
  • [13] Talawar M.B., Agrawal A.P., Chhabra J.S., Asthana S.N., Studies on Lead-Free Initiators: Synthesis, Characterization and Performance Evaluation of Transition Metal Complexes of Carbohydrazide, J. Hazard. Mater., 2004, 113, 57-65.
  • [14] Bushuyev O.S., Arguelles F.A., Brown P., Weeks B.L., Hope-Weeks L.J., New Energetic Complexes f Copper(II) and the Acetone Carbohydrazide Schiff Base as Potential Flame Colorants for Pyrotechnic Mixtures, Eur. J. Inorg. Chem., 2011, 29, 4622-4625.
  • [15] Ilyushin M.A., Tselinskiy I.V., Smirnov A.V., Shugalei I.V., Physicochemical Properties and Laser Initiation of a Copper Perchlorate Complex with 3(5)-Hydrazino-4-amino-1,2,4-triazole (HATr) as a Ligand, Cent. Eur. J. Energ. Mater., 2012, 9(1), 3-16.
  • [16] Cudzilo S., Trzcinski W., Nita M., Michalik S., Krompiec S., Kruszynski R., Kusz J., Preparation, Crystal Structure and Explosive Properties of Copper(II) Perchlorate Complex with 4-Amino-1,2,4-Triazole and Water, Propellants Explos. Pyrotech., 2011, 36, 151-159.
  • [17] Oxley J.C., Smith J.L., Higgins C., Bowden P., Moran J., Brady J., Aziz C.E., Cox E., Effciency of Perchlorate Consumption in Road Flares, Propellants and Explosives, J. Environ. Manag., 2009, 90, 3629-3634.
  • [18] Koch E.C., Pyrotechnic Countermeasures: II. Advanced Aerial Infrared Countermeasures, Propellants Explos. Pyrotech., 2006, 31, 3-19.
  • [19] Raj A.J.R., Muruganandam L., Batch Studies and Effect of Environmental Parameters on Microbial Degradation of Perchlorate Using Acclimatized Effuent Sludge, Res. J. Chem. Environ., 2012, 16, 44-50.
  • [20] Parker D.R., Perchlorate in the Environment: the Emerging Emphasis on Natural Occurrence, Environ. Chem., 2009, 6, 10-27.
  • [21] Lewis W.K., Harruff B.A., Gord J.R., Rosenberger A.T., Sexton T.M., Guliants E.A., Bunker C.E., Chemical Dynamics of Aluminum Nanoparticles in Ammonium Nitrate and Ammonium Perchlorate Matrices: Enhanced Reactivity of Organically Capped Aluminum, J. Phys. Chem. C, 2011, 115, 70-77.
  • [22] Khrapovskii V.E., Khudaverdiev V.G., Sulimov A.A., On Convective Combustion of Ammonium Perchlorate Mixtures with Aluminum, Combust. Explos. Shock Waves (Engl. Transl.), 2011, 47, 483-489.
  • [23] Talawar M.B., Agrawal A.P., Chhabra J.S., Ghatak C.K., Asthana S.N., Rao K.U.B., Studies on Nickel Hydrazinium Nitrate (NHN) and bis-(5-Nitro-2H-tetrazolato-N-2)tetraamino Cobalt(III) Perchlorate (BNCP): Potential Lead-Free Advanced Primary Explosives, J. Sci. Ind. Res., 2004, 63, 677-681.
  • [24] Li Z.M., Zhang T.L., Yang L., Zhou Z.N., Zhang J.G., Synthesis, Crystal Structure, Thermal Decomposition, and Non-Isothermal Reaction Kinetic Analysis of an Energetic Complex: Mg(CHZ)(3) (ClO4)(2) (CHZ = Carbohydrazide), J. Coord. Chem., 2012, 65, 143-155.
  • [25] Qi S.Y., Li Z.M., Zhang T.L., Zhou Z.N., Yang L., Zhang J.G., Qiao X.J., Yu K.B., Crystal Structure, Thermal Analysis and Sensitivity Property of [Zn(CHZ)3](ClO4)2, Acta Chim. Sinica, 2011, 69, 987-992.
  • [26] Huang H.S., Zhang T.L., Zhang J.G., Wang L.Q., A Screened Hybrid Density Functional Study on Energetic Complexes: Cobalt, Nickel and Copper Carbohydrazide Perchlorates., J. Hazard. Mater., 2010, 179, 21-27.
  • [27] Sun Y.H., Zhang T.L., Zhang J.G., Yang L., Qiao X.J., Decomposition Kinetics of Manganese tris Carbohydrazide) Perchlorate (MnCP) Derived from the Filament Control Voltage of the T-jump/FTIR Spectroscopy, Int. J. Therm. Sci., 2006, 45, 814-818.
  • [28] Sun Y.H., Zhang T.L., Zhang J.G., Yang L., Qiao X.J., Kinetics of Flash Pyrolysis of Co(CHZ)3 (ClO4)2 and Ni(CHZ)3ClO4)2, Acta Phys.-Chim. Sinica, 2006, 22, 649-652.
  • [29] Sun Y.H., Zhang T.L., Zhang J.G., Qiao X.J., Yang L., Flash Pyrolysis Study of Zinc Carbohydrazide Perchlorate Using T-jump/FTIR Spectroscopy, Combust. Flame, 2006, 145, 643-646.
  • [30] Klapötke T.M., Stierstorfer J., The CN7Anion, J. Am. Chem. Soc., 2009, 131,1122-1134.
  • [31] Huynh M.H.V., Hiskey M.A., Chavez D.E., Naud D.L., Gilardi R.D., Synthesis, Characterization, and Energetic Properties of Diazido Heteroaromatic High-Nitrogen C-N Compound, J. Am. Chem. Soc., 2005, 127, 12537-12543.
  • [32] Carlqvist P., Ostmark H., Brinck T., The Stability of Arylpentazoles, J. Phys. Chem A, 2004, 108, 7463-7467.
  • [33] Sheldrick G.M., SHELXS-97, Program for the Solution of Crystal Structure, Germany: University of Göttingen, 1997.
  • [34] GJB 5891.22-2006, Test Method of Loading Material for Initiating Explosive Device − Part 22: Mechanical Impact Sensitivity Test, Commission of Science Technology and Industry for National Defense, 2006, 131-135.
  • [35] GJB 5891.24-2006, Test Method of Loading Material for Initiating Explosive Device − Part 24: Friction Sensitivity Test, Commission of Science Technology and Industry for National Defense, 2006, 143-147.
  • [36] GJB 5891.25-2006, Test Method of Loading Material for Initiating Explosive Device − Part 25: Sensitivity to Flame Test, Commission of Science Technology and Industry for National Defense, 2006, 151-153.
  • [37] Huang H.S., Zhang T.L., Zhang J.G., Wang L.Q., Density Functional Theoretical Study of Transition Metal Carbohydrazide Perchlorate Complexes, Chem. Phys. Lett., 2010, 487, 200-203.
  • [38] Zhang T.L., Hu R.Z., Xie Y., Li F.P., The Estimation of Critical-Temperatures of Thermal-Explosion for Energetic Materials Using Nonisothermal DSC., Thermochim. Acta, 1994, 244, 171-176.
  • [39] Hu R.Z., Ning B.K., Yu Q.S., Zhang T.L., Liu R., Yang Z.Q., Gao S.L., Zhao H.A., Shi Q.Z., Estimation of the Critical Temperature of Thermal Explosion for Energetic Materials Using Non-Isothermal Analysis Method, Chin. J. Energ. Mater, 2003, 11, 18-25.
  • [40] Ou Y.X. Explosives, Beijing: Beijing Institute of Technology Press, 2006.
  • [41] Lv C.H., Zhang T.L., Ren B.L., Yu K.B., Lu Z., Cai R.J., Preparation, Structure, and Explosive Properties of [Co(CHZ)3](ClO4)2, Chin. J. Explos., 2000, 1, 31-33.
  • [42] Zhang J.G., Zhang T.L., Wei Z.R., Yu K.B., Studies on Preparation, Crystal Structure and Application of Mn(CHZ)3 (ClO4)2, Chem. J. Chin. Univ.-Chin., 2001, 22, 895-897.
  • [43] Huynh M.H.V., Hiskey M.A., Hartline E.L., Montoya D.P., Gilardi R., Polyazido High-Nitrogen Compounds: Hydrazo- and Azo-1,3,5-triazine, Angew. Chem. Int. Ed., 2004, 43, 924-4928.
  • [44] Talawar M.B., Agrawal A.P., Asthana S.N., Energetic Co-ordination Compounds: Synthesis, Characterization and Thermolysis Studies on bis-(5-Nitro-2H-tetrazolato-N-2)tetraammine Cobalt(III) Perchlorate (BNCP) and Its New Transition Metal (Ni/Cu/Zn) Perchlorate Analogues, J. Hazard. Mater., 2005, 120, 25-35.
  • [45] Lai W.P., Lian P., Wang B.Z., Ge Z.X., New Correlations for Predicting Impact Sensitivities of Nitro Energetic Compounds, J. Energ. Mater., 2010, 28, 45-76.
  • [46] Badders N.R., Wei C., Aldeeb A.A., Rogers W.J., Mannan M.S., Predicting the Impact Sensitivities of Polynitro Compounds Using Quantum Chemical Descriptors, J. Energ. Mater., 2006, 24, 17-33.
  • [47] Ramaswamy A.L., Mesoscopic Approach to Energetic Material Sensitivity, J. Energ. Mater., 2006, 24, 35-65.
  • [48] Gilman J.J., Bond Modulus and Stability of Covalent Solids, Philos. Mag. Lett., 2007, 87,121-124.
  • [49] Gilman J.J., Mechanochemical Mechanisms in Stress Corrosion, Chemistry and Electrochemistry of Corrosion and Stress Corrosion Cracking: A Symposium Honoring the Contributions of R.W. Staehle (Jones R.H., Ed.) 2001.
  • [50] Gilman J.J., Chemical and Physical “Hardness”, Mater. Res. Innov., 1997, 1, 71-76.
  • [51] Gilman J.J., Chemical-Reactions at Detonation Fronts in Solids, Philos. Mag. B, 1995, 71, 1057-1068.
  • [52] Chen F., Cheng X.L., A First-Principles Investigation of the Hydrogen Bond Interaction and the Sensitive Characters in cis-1,3,4,6-Tetranitrooctahydroimidazo-4,5-dimidazole, Int. J. Quantum Chem., 2011, 111, 4457-4464.
  • [53] Li J., Relationships for the Impact Sensitivities of Energetic C-Nitro Compounds Based on Bond Dissociation Energy, J. Phys. Chem. B, 2010, 114, 2198-2202.
  • [54] Zhu W., Xiao H., First-Principles Study of Electronic Structure, Absorption Spectra, and Thermodynamic Properties of Crystalline 1H-Tetrazole and Its Substituted Derivatives, Structural Chemistry, 2010, 21, 847-854.
  • [55] Wang G.X., Gong X.D., Xiao H.M., A Theoretical Investigation on Pyrolysis Mechanism and Impact Sensitivity of Nitro Derivatives of Benzene and Aminobenzenes, Acta Chim. Sinica, 2008, 66, 711-716.
  • [56] Zhang H., Cheung F., Zhao F., Cheng X.L., Band Gaps and the Possible Effect on Impact Sensitivity for Some Nitro Aromatic Explosive Materials, Int. J. Quantum Chem., 2009, 109, 1547-1552.
  • [57] Zhu W., Xiao H., First-Principles Study of Electronic, Absorption, and Thermodynamic Properties of Crystalline Styphnic Acid and Its Metal Salts, J. Phys. Chem. B, 2009, 113, 10315-10321.
  • [58] Zhu W., Zhang X., Wei T., Xiao H., First-principles Study of Crystalline Mono-Amino-2,4,6-trinitrobenzene, 1,3-Diamino-2,4,6-trinitrobenzene, and 1,3,5-Triamino-2,4,6-trinitrobenzene, J. Mol. Struc.-Theochem., 2009, 900, 84-89.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-2c9d33c9-4595-4ea9-9098-f955b8783548
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.