PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Integrated and deep learning–based social surveillance system : a novel approach

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In industry and research, big data applications are gaining a lot of traction and space. Surveillance videos contribute significantly to big unlabelled data. The aim of visual surveillance is to understand and determine object behavior. It includes static and moving object detection, as well as video tracking to comprehend scene events. Object detection algorithms may be used to identify items in any video scene. Any video surveillance system faces a significant challenge in detecting moving objects and differentiating between objects with same shapes or features. The primary goal of this work is to provide an integrated framework for quick overview of video analysis utilizing deep learning algorithms to detect suspicious activity. In greater applications, the detection method is utilized to determine the region where items are available and the form of objects in each frame. This video analysis also aids in the attainment of security. Security may be characterized in a variety of ways, such as identifying theft or violation of covid protocols. The obtained results are encouraging and superior to existing solutions with 97% accuracy.
Twórcy
  • Computer Science Engineering Dept. Medi-Caps University, Indore, India
  • Computer Science Engineering Dept. Medi-Caps University, Indore, India
  • Computer Science Engineering Dept. Medi-Caps University, Indore, India
autor
  • Computer Science Engineering Dept. Medi-Caps University, Indore, India
Bibliografia
  • [1] H. Liu, S. Chen and N. Kubota, “Intelligent Video System and Analytics: A Survey,” IEEE Transactions on Industrial Informatics, vol. 9, no. 3, 2013, pp. 1222-1233.
  • [2] J. Redmon, S. Divvala, R. Grishick and A. Farhadi, “You Only Look Once: Unified, Real-Time Object Detection,” Proceeding of the IEEE Conference on Computer Vision and Pattern Recognition, 2016, pp. 779-788.
  • [3] D. S. Gothane, “A Practice for Object Detection Using YOLO Algorithm,” International Journal of Science Research in Computer Science, Engineering and Information Technology, vol. 7, no. 2, 2021, pp. 268-272.
  • [4] B. Qiang, R. Chen, M. Zhou, Y. Pang, Y. Zhai and M. Yang, “Convolutional Neural NetworksBased Object Detection Algorithm by Jointing Semantic,” Segmentation for Images, Sensors, 2020.
  • [5] S. Gupta and D. T. U. Devi, “YOLOv2 Based Real Time Object Detection,” International Journal of Computer Science Trends and Technology, vol. 8, no. 3, 2020.
  • [6] G. S., “Real-Time Object Detection with Yolo,” proceedings of the International Journal of Engineering and Advanced Technology (IJEAT), 2019.
  • [7] T. K. M, V. P. M., Y. B., J. S. and L. Dr. K., “Video Analytics on Social Distancing and Detecting Mask - A detailed Analysis,” International Journal of Advanced Engineering Research and Science (IJAERS), vol. 8, no. 5, 2021.
  • [8] S. Gupta, V. Dhok, A. Chandrayan and S. Tiwari, “Facemask Detection using OpenCv,” International Journal of Advanced Research in Computer and Communication Engineering, vol. 10, no. 6, 2021.
  • [9] R. Kakadiya, R. Lemos, S. Mangalan, M. Pillai and S. Nikam, “AI Based Automatic Robbery/Theft Detection using Smart Surveillance in Banks,” Proceedings of the Third International Conference on Electronics Communication and Aerospace Technology, 2019.
  • [10] S. Patil, M. Shidore, T. Prabhu, S. Yenare and V. Somkuwar, “Theft detection using computer vision,” International Journal of Advance Research, Ideas and Innovations in Technology, vol. 5, no. 1, 2019, pp. 567-569.
  • [11] C. G, A. Jain, H. Jain and M. , “Real Time Object Detection and Tracking Using Deep Learning and OpenCV,” Proceedings of the International Conference on Inventive Research in Computing Applications, 2018.
  • [12] C. Kumar B, P. R and Mohana, “YOLOv3 and YOLOv4: Multiple Object Detection for Surveillance Applications,” Proceedings of the Third International Conference on Smart Systems and Inventive Technology, 2020.
  • [13] A. Bochkovskiy, C.-Y. Wang and H.-Y. Mark Liao, “YOLOv4: Optimal Speed and Accuracy of Object Detection,” arXiv:2004.10934v1 [cs.CV], 2020.
  • [14] P. K. Mishra and G. P. Saroha, “A Study on Video Surveillance System for Object Detection and Tracking,” IEEE, 2016.
  • [15] A. Bari, S. Waseem, S. and S., “Social Distancing Through Image Processing, Video Analysis, and CNN,” in International Conference on Computational Intelligence and Emerging Power System, 2022.
  • [16] A. H. Ahamad, N. Zaini and M. F. A. Latip, “Person Detection for Social Distancing and Safety Violation Alert based on Segmented ROI,” IEEE International Conference on Control System, Computing and Engineering (ICCSCE2020), 2020.
  • [17] D. k. R. S. M. P. V. R. D. P. R. Harish Adusumalli, “If the input is a video stream, the picture or a frame of the video is initially delivered to the default face detection module for detection of human faces. This is accomplished by first enlarging the picture or video frame, then identifying the blob ins,” Proceeding of the third international conference on intelligent communication technologies and virtual mobile networks, 2021.
  • [18] H. Adusumalli, D. Kalyani and R. K. Sri, “Face Mask Detection Using OpenCV,” Proceedings of the Third International Conference on Intelligent Communication Technologies and Virtual Mobile Networks (ICICV 2021)., 2021.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-2c9be446-aca7-4fa0-aba5-6077c42c20bf
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.