PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Dairy wastewater treatment using membrane filtration supported by biological processes

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Oczyszczanie ścieków mleczarskich przy użyciu filtracji membranowej wspomaganej procesami biologicznymi
Języki publikacji
EN
Abstrakty
EN
This paper presents efficient treatment methods for dairy wastewater using membrane techniques and applying the biological utilization of secondary wastes. The influence of ultrafiltration (UF) and both ultra- and nanofiltration (UF/NF) systems on the removal efficiency of the contaminants was determined. It has been found that the UF enables the removal of larger organic compounds, whose presence on the NF membrane surface would reduce its efficiency. The recovery of water from these processes is associated with the generation of retentate, which is difficult to treat. For the utilization of the retentate, biological methods based on bioaugmentation process and microalgal culture were used. The combination of both these methods contributed to the significant reduction in the content of nutrients in the regenerated water (the total nitrogen <1.0 mg/dm3 , the total phosphorus <0.1 mg/dm3 ). Furthermore, it was possible to obtain a microalgae biomass, which becomes more commonly used, e.g., as renewable energy resources. These studies are part of the prospective trends in the development of the bioeconomy, especially in a closed circuit.
PL
W pracy przedstawiono metody efektywnego oczyszczania ścieków mleczarskich z zastosowaniem technik membranowych i procesów biologicznych. Zbadano wpływ ultrafiltracji (UF) oraz zintegrowanych procesów ultra- i nanofiltracji (UF/NF) na skuteczność usuwania zanieczyszczeń. Stwierdzono, że UF umożliwia usuwanie większych cząstek organicznych, których obecność na powierzchni membrany NF pogorszyłaby jej wydajność. Odzyskiwanie wody z zastosowaniem tych procesów wiąże się z powstawaniem retentatu, który jest trudny do uzdatnienia. Do tego celu w pracy wykorzystano metody biologiczne, oparte na bioaugmentacji i hodowli mikroalg. Połączenie obu tych metod przyczyniło się do znacznego zmniejszenia zawartości związków biogennych w wodzie regenerowanej (azot ogólny <1.0 mg/dm3 , fosfor ogólny <0.1 mg/dm3 ). Ponadto uzyskano biomasę alg, która może znaleźć zastosowanie m.in. jako odnawialny surowiec energetyczny. Podjęte badania wpisują się w perspektywiczne trendy rozwoju biogospodarki, w szczególności w obiegu zamkniętym.
Twórcy
  • Łukasiewicz Research Network - Institute for Sustainable Technologies, Radom, Poland
  • Łukasiewicz Research Network - Institute for Sustainable Technologies, Radom, Poland
  • Łukasiewicz Research Network - Institute for Sustainable Technologies, Radom, Poland
  • Łukasiewicz Research Network - Institute for Sustainable Technologies, Radom, Poland
Bibliografia
  • 1. Steinhoff-Wrześniewska A., Rajmund A., Godzwon J.: Water consumption in selected branches of food industry. Ecological Engineering, 2013, 32, pp. 164-171 [in Polish].
  • 2. Kasztelan A., Kierepka M.: Impact of the food industry on the environment in Poland. Polish Association of Agricultural and Agribusiness Economists. Scientific Yearbooks 2014, 16(2), pp. 109-116 [in Polish].
  • 3. Vourch M., Balannec B., Chaufer B., Dorange G..: Treatment of dairy industry wastewater by reverse osmosis for water reuse. Desalination, 2008, 219 (1-3), pp. 190-202.
  • 4. Cassano A., Rastogi N.K., Basile A.: Membrane technologies for water treatment and reuse in the food and beverage industries. Advances in Membrane Technologies for Water Treatment, 2015, 18, pp. 551-580.
  • 5. Govindasamy-Lucey S., Jaeggi J.J., Martinelli C., Johnson M.E., Lucey J.A.: Standardization of milk using cold ultrafiltration retentates for the manufacture of swiss cheese: Effect of altering coagulation conditions on yield and cheese quality. J. Dairy Sci. 2011, 94 (6), pp. 2719-2730.
  • 6. Kumar P., Sharma N., Ranjan R., Kumar S., Bhat Z.F., Jeong D.K.: Perspective of membrane technology in dairy industry: A Review. Asian-Australasian Journal of Animal Sciences, 2013, 26(9), pp. 1347-1358.
  • 7. Suárez A., Fidalgo T., Riera F.A.: Recovery of dairy industry wastewaters by reverse osmosis. Production of boiler water. Sep. Purif. Technol., 2014, 133, pp. 204-211.
  • 8. Huang L.P., Dong T., Chen J.W., Li N.: Biotechnological production of lactic acid integrated with fishmeal wastewater treatment by Rhizopus oryzae. Bioprocess Biosyst. Eng., 2007, 30(2), pp. 135-140.
  • 9. Bajić B.Ž., Rončević Z., Puškaš V., Miljić U., Dodić S.N., Grahovac J.A., Dodić J.M.: White wine production effluents used for biotechnological production of xanthan. J. Proc. and Energy in Agriculture, 2015, 19, pp. 52-55.
  • 10. Hena S., Fatimah S., Tabassum S.: Cultivation of algae consortium in a dairy farm wastewater for biodiesel production. Water Resources and Industry, 2015, 10, pp. 1-14.
  • 11. Laurens L.M.I., Chen-Glasser M., McMillan J.D.: A perspective on renewable bioenergy from photosynthetic algae as feedstock for biofuels and bioproducts. Algal Research, 2017, 24(A), pp. 261-264.
  • 12. Lateef A., Nawaz Chaudry M., Ilyas S.: Biological treatment of dairy wastewater using activated sludge. Science Asia, 2013, 39, pp. 179-185.
  • 13. Carrasco E.F., Omil F., Garrido J.M., Arrojo B., Méndez R.: Advanced monitoring and supervision of biological treatment of complex dairy effluents in a full-scale plant. Biotechnol. Prog., 2004, 20, pp. 992-997.
  • 14. Demirel B., Yenigun O., Onay T.T.: Anaerobic treatment of dairy wastewaters: A review. Process Biochem., 2005, 40(8), pp. 2583-2595.
  • 15. Mutua D.N., Njagi E.N.M., Orinda G.O., Obondi G., Kansiime F., Kyambadde J., Omara J.B., Odong R., Butungi H.: Biological treatment of meat processing wastewater using lab-scale anaerobicaerobic/anoxic sequencing batch reactors operated in series. J. Bioremediat. Biodegrad., 2016, 7(4), pp. 1-6.
  • 16. Porwal H.J., Mane A.V., Velhal S.G.: Biodegradation of dairy effluent by using microbial isolates obtained from activated sludge. Water Resources and Industry, 2015, 9, pp. 1-15.
  • 17. Herrero M., Stuckey D.C.: Bioaugmentation and its application in wastewater treatment: A review. Chemosphere, 2015, 140, pp. 119-128.
  • 18. Loperena L., Saravia V., Murro D., Ferrari M.D., Lareo C.: Kinetic properties of a commercial and a native inoculum for aerobic milk fat degradation. Bioresour. Technol., 2006, 97(16), pp. 2160-2165.
  • 19. Loperena L., Ferrari M.D., Díaz A., Ingold G., Pérez L.V., Carvallo F.R., Travers D., Menes R.J., Lareo C.: Isolation and selection of native microorganisms for the aerobic treatment of simulated dairy wastewaters. Bioresour. Technol., 2009, 100(5), pp. 1762-1766.
  • 20. Nzila A., Razzak S.A., Zhu J.: Bioaugmentation: An emerging strategy of industrial wastewater treatment for reuse and discharge. Int. J. Environ. Res. Public Health, 2016, 13(9), pp. 846.
  • 21. Labbé J.I., Ramos-Suárez J.L., Hernández-Pérez A., Baeza A., Hansen F.: Microalgae growth in polluted effluents from the dairy industry for biomass production and phytoremediation. JECE, 2017, 5, pp. 635-643.
  • 22. Chisti Y.: Biodiesel from microalgae. Biotechnol. Adv., 2007, 25(3), pp. 294-306.
  • 23. Bharathiraja B., Chakravarthy M., Ranjith Kumar R., Yogendran D., Yuvaraj D., Jayamuthunagai J., Praveen Kumar R., Palani S.: Aquatic biomass (algae) as a future feed stock for bio-refineries: A review on cultivation, processing and products. Renew, Sust. Energ. Rev., 2015, 47, pp. 634-653.
  • 24. Young G., Nippgen F., Titterbrandt S., Cooney M.J.: Lipid extraction from biomass using cosolvent mixtures of ionic liquids and polar covalent molecules. Sep. Purif. Technol., 2010, 72(1), pp. 118-121.
  • 25. Dębowski M., Zieliński M., Rokicka M., Kupczyk K.: The possibility of using macroalgae biomass from natural reservoirs as a substrate in the methane fermentation process. Int. J. Green Energy, 2015, 12(9), pp. 970-977.
  • 26. Pandey A., Lee D.J., Chisti Y., Soccol C.R. (eds.): Biofuels from algae. Elsevier, 2014.
  • 27. Zhang Y., White A.M., Colosi L.M.: Environmental and economic assessment of integrated systems for dairy manure treatment coupled with algae bioenergy production. Bioresour. Technol., 2013, 130, pp. 486-494.
  • 28. Wang C., Yu X., Lv H., Yang J.: Nitrogen and phosphorus removal from municipal wastewater by the green alga Chlorella sp. J. Environ. Biol., 2013, 2(34), pp. 421-425.
  • 29. Kumar A., Ergas S., Yuan X., Sahu A., Zhang Q., Dewulf J., Malcata F.X., van Langenhove H.: Enhanced CO2 fixation and biofuel production via microalgae: recent developments and future directions. Trends Biotechnol., 2010, 28(7), pp. 371-380.
  • 30. Lu Q., Zhou W., Min M., Ma X., Ma Y., Chen P., Zheng H., Doan Y.T.T., Liu H., Chen Ch., Urriola P.E., Shurson G.C., Ruan R.: Mitigating ammonia nitrogen deficiency in dairy wastewater for algae cultivation. Bioresour. Technol., 2016, 201, pp. 33-40.
  • 31. Rai U.N., Singh N.K., Upadhyay A.K., Verma S.: Chromate tolerance and accumulation in Chlorella vulgaris L: Role of antioxidant enzymes and biochemical changes in detoxification of metals. Bioresour. Technol., 2013, 136, pp. 604-609.
  • 32. Religa P., Kowalik-Klimczak A., Gierycz P.: Study on the behavior of nanofiltration membranes using for chromium(III) recovery from salt mixture solution. Desalination, 2013, 315, pp. 115-123.
  • 33. Balannec B., Gésan-Guiziou G., Chaufer B., Rabiller-Baudry M., Daufin G.: Treatment of dairy process waters by membrane operations for water reuse and milk constituents concentration. Desalination, 2002, 147(1-3), pp. 89-94.
  • 34. Cuartas-Uribe B., Alcaina-Miranda M.I., SorianoCosta E., Bes-Piá A.: Comparison of the behaviour of two nanofiltration membranes for sweet whey demineralization. J. Dairy Sci., 2007, 90(3), pp. 1094-1101.
  • 35. Luo J., Ding L., Qi B., Jaffrin M.Y., Wan Y.: A twostage ultrafiltration and nanofiltration process for recycling dairy wastewater. Bioresour. Technol., 2011, 102(16), pp. 7437-7442.
  • 36. Das B., Sarkar A., Sarkar A., Bhattacharjee S., Bhattacharjee Ch.: Recovery of whey proteins and lactose from dairy waste: A step towards green waste management. Process Saf. Environ. Prot., 2016, 101, pp. 27-33.
  • 37. Hausmann A., Sanciolo P., Vasiljevic T., Weeks M., Schröen K., Gray S.R., Duke M.: Fouling of dairy componentsonhydrophobicpolytetrafluoroethylene (PTFE) membranes for membrane distillation. J. Membr. Sci., 2013, 442, pp. 149-159.
  • 38. Loperena L., Ferrari M.D., Saravia V., Murro D., Lima C., Ferrando L., Fernández A., Lareo C.: Performance of a commercial inoculum for the aerobic biodegradation of a high fat content dairy wastewater. Bioresour. Technol., 2007, 98(5), pp. 1045-1051.
  • 39. Singhal N., Perez-Garcia O.: Degrading organic micropollutants: The next challenge in the evolution of biological wastewater treatment processes. Front. Environ. Sci., 2016, 4, pp. 1-5.
  • 40. Posavac S., Dragičević T.L., Hren M.Z.: The improvement of dairy wastewater treatment efficiency by the addition of bioactivator. Mljekarstvo, 2010, 60(3), pp. 198-206.
  • 41. Dragičević T.L., Hren M.Z., Grgas D., Buzdum I., Čurlin M.: The potential of dairy wastewater for denitrification. Mljekarstvo, 2010, 60(3), pp. 191-197.
  • 42. Mulkerrins D., Dobson A.B.W., Colleran E.: Parameters affecting biological phosphate removal from wastewaters. Environ. Intern., 2004, 30, pp. 249-259.
  • 43. Świerczyńska A., Bohdziewicz J., Amalio-Kosel M.: Activity of activated sludge microorganisms in the co-treatment of the leachates in the SBR bioreactor. Ecol. Chem. Eng. A., 2014, 8, pp. 895-902.
  • 44. Wagner M., Loy A.: Bacterial community composition and function in sewage treatment systems. Curr. Opin. Biotechnol., 2002, 13(3), pp. 218-227.
  • 45. Kurzbaum E., Shalom O.B.: The potential of phosphate removal from dairy wastewater and municipal wastewater effluents using a lanthanummodified bentonite. Applied Clay Sci., 2016, 123, pp. 182-186.
  • 46. Dziosa K., Makowska M.: Monitoring of Chlorella sp. growth based on the optical density measurement. Maintenance Problems, 2016, 101(2), pp. 197-206.
  • 47. Belotti G., de Caprariis B., De Filippis P., Scarsella M., Verdone N.: Effect of Chlorella vulgaris growing conditions on bio-oil production via fast pyrolysis. Biomass and Bioenergy, 2014, 61, pp. 187-195.
  • 48. Kwietniewska E., Tys J., Krzemińska I., Kozieł W.: Microalgae - cultivation and application of biomass as a source of energy: A review. Acta Agrophysica Monographiae. Lublin: Inst. of Agrophysis, Polish Academy of Sciences, 2012.
  • 49. Cheah W.Y., Ling T.Ch., Show P.L., Juan J.Ch., Chang J.-S., Lee D.-J.: Cultivation in wastewaters for energy: A microalgae platform. App. Energy, 2016, 179, pp. 609-625.
  • 50. Guo W., Zheng H.S., Li S., Du J.S., Feng X.C., Yin R.L., Wu Q.L., Ren N.Q., Chang J.S.: Removal of cephalosporin antibiotics 7-ACA from wastewater during the cultivation of lipidaccumulating microalgae. Bioresour. Technol., 2016, 221, 284-290.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-2c9bc0b4-0f86-4c77-a0dc-0061b841655a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.