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Abstract 

Dependent failures are extremely important in reliability analysis and must be given adequate treatment so as to 

minimize gross underestimation of reliability. German regulatory guidance documents for PSA stipulate that model 

parameters used for calculating frequencies should be derived from operating experience in a transparent manner. 

Progress has been made with the process oriented simulation (POS) model for common cause failure (CCF) 

quantification. A number of applications are presented for which results obtained from established CCF models are 

available, focusing on cases with high degree of redundancy and small numbers of observed events. 

 

1. Common cause failure analysis in the frame 

of probabilistic safety assessment 

Design, operation and maintenance of systems are 

performed to minimize potential failures such as 

random, systematic and dependent failures. Dependent 

failures comprise secondary failures caused, e.g., by 

violation of operational conditions and so-called 

commanded failures like component fails due to 

violation of interface conditions. The residual part of 

the group of commanded failures is called common 

cause failures (CCF). To identify dependent failures, 

approaches have been extended to encompass potential 

interpendencies between systems or components.  

Secondary and commanded failures are supposed to be 

modelled explicitly as far as possible in fault tree 

models of the system whereas common cause failures 

are taken into account in probabilistic safety 

assessment implicitly by parametric models. 

In general, the most important defence against 

accidental component or system failures is the 

implementation of principles such as separation, 

diversity and redundancy. However, experience has 

shown that redundancy itself is not sufficient to avoid 

undesired events just because of possible dependent 

failures. 

CCF of redundant safety relevant systems have been of 

concern since quantitative estimation of the reliability 

of these systems was developed starting in the early 

70ies because this type of failures affect significantly 

their availability and reliability leading – in the worst 

case – to a simultaneous loss of all redundancies. 

Typical examples of CCF are miscalibration of 

sensors, incorrect maintenance, environmental impact 

on the field device and use of a not appropriate process 

fluid, which plugs valves in different redundancies. 

Experience from numerous probabilistic safety 

assessments has shown that, especially for highly 

redundant systems in nuclear power plants, common 

cause failures tend to dominate the results of these 

assessments such as the core damage frequency or 

large early release frequency. 

As a consequence of generally rather effective defence 

against common cause failures in place, the number of 

really observed events in nuclear power plants is 

limited, in particular with respect to events involving 

failures of all or at least many redundant components. 

However, the operational experience contains some 

information on potential common cause failures, i. e., 

partial failures that could have evolved into the 

complete failure- of the common cause component 

group within a short period of time. This in turn 

requires in one way or the other an extrapolation based 

on parametric models, which is extremely difficult to 

verify. 
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Despite of these difficulties significant progress has 

been made in the last years due to increasing 

operational experience, more systematic data collection 

and analysis, growing experience in probabilistic 

safety assessment and an enhanced exchange on data 

and methods both nationally and internationally.  

Although the use of plant-specific data in probabilistic 

safety assessment is preferred, in case of lack of events 

or of information it is helpful to provide a generic data 

base taking into account all national experiences and 

appropriate international data. Data bases like the 

OECD/NEA International Common Cause Failure 

Data Exchange Project allows collecting and analysing 

data of a lot of different components such as valves, 

pumps and diesel generators. Results of the analysis of 

these data also enable to assess and improve the 

effectiveness of defences against common cause failure 

events. For that purpose, data and information related 

to events observed in the operational experience with 

sufficiently detailed content have to be provided. 

In general, the treatment of common cause failures 

within probabilistic safety assessment requires four 

main steps: development of a system logic model, 

identification of common cause component groups, 

common cause modelling and data analysis as well as 

quantification and interpretation of the results. For the 

quantitative part of the common cause failure 

assessment, models have still to be further developed, 

in particular with respect to applicability to highly 

redundant systems, suitability and traceability. 

 

2. German practice 

Probabilistic safety analyses (PSA) have been 

performed for all operating German nuclear power 

plants. Experience has shown that CCF in many cases 

tends to dominate the results of the PSA. Therefore, 

methods and results of CCF analyses receive a lot of 

attention in the discussions between regulator, 

technical experts, utilities and analysts. 

Regulatory guidance is available in Germany for level 

1+ PSA (a level 1+ analysis is understood to end at the 

onset of core damage but to take into account active 

containment functions) as part of periodic safety 

reviews of nuclear power plants. According to the 

importance of CCF, a chapter in the German regulatory 

guidance documents is dedicated to dependent failures 

[6]-[7]. These failures comprise secondary failures 

caused by violation of operational or environmental 

conditions as well as commanded failures - intact 

component failing due to violation of interface 

conditions, for example in the case of erroneous 

signals or failed energy supply. The residual part of the 

group of dependent failures is the common cause 

failures mentioned before. Secondary and commanded 

failures are to be modelled explicitly as far as possible 

in the fault tree models of the system. CCF, on the 

other hand, are taken into account in PSA by parameter 

models [2]. 

The guidelines mentioned before – they are currently 

undergoing final steps of revision in view of the fact 

that the Atomic Energy Act as amended in 2002 makes 

Periodic Safety Reviews (including PSA) mandatory – 

do not prescribe specific CCF models. Rather, they 

demand that the parameters of any model used are to 

be derived in a clearly described way from operating 

experience. Thus, in German PSA practice, a variety of 

models have been used [1], [9], [10]. 

 

3. A process oriented simulation model (POS) 

for CCF quantification 
 

3.1. Rationale and objectives 

The question can be raised whether an approach 

aiming at modelling the entire CCF process from the 

point in time of the root cause impact to failures taking 

effect or being detected in the common cause 

component group (CCCG) in a more mechanistic 

manner could support and complement the established 

modelling which is mostly aiming at failure 

probabilities. Such a process oriented modelling 

approach is described and discussed in this paper. It 

represents a further elaboration of the modelling stages 

described in [3]-[4]. 

 

3.2. Model description 

The method of stochastic simulation offers a 

convenient way to describe the model and to quantify 

its results. The sequence of stochastic variables 

displayed in table 1 is supposed to adequately describe 

the CCF process. 

Based on simulation of this sequence, the associated 

unavailability‟s can be calculated. 

The following fixed-value parameters are used 

throughout a simulation sequence: 

 operation time         TB 

 number of components in the CCCG:        r 

 time between functional tests     TFT 
The sequence of variables and calculations defines a 

single simulation of the common cause failure process. 

It is described how the variables are either derived 

from a stochastic assumption or are calculated 

deterministically. 

The calculation of the probabilities W(m,r) for the 

event that the common cause impact will affect exactly 

m out of r components are calculated by a recursive 

scheme that is detailed in [3]. Here, only the formulae 

up to r = 4 are given. Model parameters are a and r0. 

 
     12,2 W ,                                                                 (1) 
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     aW 3,3 ,                                                                 (2) 

 

     aW 13,2 ,                                                             (3) 

 

         0/3
114,4

r
eaaaW


 ,                                   (4) 

 

      214,2 aW  ,                                                          (5) 

 

        4,24,414,3 WWW  .                                         (6) 

 

To facilitate handling of the necessary equations, 

model parameter r0 is replaced by: 

 

    01exp rc  .                                                               (7) 

 

In the applications presented here, a model version has 

been used that is based on a simplified assumption 

regarding the CCF identification. It is assumed that 

non-staggered testing is applied and that a CCF-event 

is identified at the functional test following the first 

component failure. It is well known that conditions in 

the field are more complex. To account for that from 

the information provided in the literature sources 

effective test intervals have been estimated for the 

POS-analyses. The model assumptions can be 

modified to account for other situations like staggered 

testing in a straightforward manner. As the prime 

purpose of this paper is to demonstrate key features of 

the POS model such refinements have been postponed. 

 

3.3. Parameter estimation for the process 

oriented simulation model 

The parameter estimation routine used here is closely 

related to the one described in [4]. It has, however, 

been simplified without significantly lowering its 

precision. 

 

3.3.1. Frequency 

The model has essentially four parameters that have to 

be estimated. The first is the frequency of CCF-events 

for which the usual estimator for failure rates is used. 

 

3.3.2. Number of impacted components 

The approach selected consists of an estimation of the 

distribution of the number of impacted components 

based on the observed events: 

 

    
 

.
11

,
K

rN
rmW m

est


                                               (8) 

 

The constant term 1/(r-1) is introduced into the 

estimator to avoid vanishing probabilities, which in 

practice are not expected. K serves for normalization. 

Nm is the number of events for CCCG size r and with 

number of impacted components m. 

On the other hand, the probabilities can be calculated 

as functions of the model parameters. It can be shown 

that 

       .1,2
2


r

arW                                                        (9) 

 

Table 1. Overview of the POS model 

Sequence of Modelling assumptions for the stochastic variables 

stochastic variables Model parameter Assumption 

Time tCCI of common cause impact Rate of common cause impacts rCCI Equally distributed in TB, rCCI TB  1, 

Number m  r + 1 of impacted components  a, ro Probability W (m, r), see formulae (1) 

to (6) and [3]  

Failure rate R of the impacted components Probability of instantaneous failure of all 

impacted components Winst, interval for 

rates of non- instantaneous failures RMIN 

to RMAX 

According to Winst the m components 

fail either instantaneously or are 

logarithmic equally distributed in the 

interval RMIN to RMAX 

Times of failure of the impacted components tF (m) Either all impacted components fail at 

tCCI or the times of failure are 

exponentially distributed with rate R 

Identification of CCF-process by the 

functional test 

 

   

For times  tF (i) the failure and the 

common cause process are identified, 

the components are immediately 

repaired and as good as new  

Time of CCF identification tID TFT The functional tests are performed at 

intervals TFT . The first test time after 

the first failure occurring at the 

minimum of the tF (m) is equal to tID 

Finally, from the failure times tF (i) (i = 1, ..., m) in the time interval between tCCI and tID the time periods are calculated in which 

zero, one, two, ... up to at most m components are failed:  mii ,..,2,1,0)(   

The average of  (i) / TB  (i  1) for many simulations is the unavailability.  
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This relation suggests the following estimator: 

 

      
.1,2

21 


r

estest Wra                                                 (10) 

 
In a second step, parameter c is estimated based on the 

mean of m: 

 

   .),(
2

 


r

m
estest rmWmm                                             (11) 

 
Again, the mean of m can be calculated as a function y 

of the model parameters a and c 

 

    .,caym                                                             (12) 

 
This can be used to estimate c based on the estimates 

aest and West(m,r) already obtained 

 

    .,1
estestest mayc                                                   (13) 

 
Here, y

-1
 denotes function y(a,c) inverted with respect 

to c. 

 

There are, however, cases in which the non-linear 

equation (13) for cest does not have a meaningful 

solution. This is avoided by applying the following 

transformation to the estimated <m>est: 
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The following estimator does always lead to meaning-

full results: 

 

    .,1
estestest mayc                                                   (15) 

 

3.3.3. Fraction of impacts leading to immediate 

failure 

The last parameter to be estimated is the fraction of 

events that lead to failure of all impacted components 

immediately, Winst. It can – in some cases – be derived 

from the event reports in a straightforward manner. 

A quantity sensitive to this parameter is the ratio of the 

number of events Nf in which all impacted components 

failed to the number of all events Ntotal 

 

   .totalf NNf                                                             (16) 

 

For the mean value of this parameter holds 

     ,1 continstinst FWWf                                         (17) 

 
Fcont denotes the probability that in case of a non-

instantaneous failure event all impacted components 

fail. This quantity obviously depends on the time of 

CCF detection. The identity serves as motivation for 

the following estimator 

 
         .1,21max contconttotalinst FFfNW                    (18) 

 
The estimation procedure described here is easier to 

handle than the approach described in [4] which is 

based on minimization of Kullback‟s information 

measure [11]. 

The rationale for the estimation procedure is rather of 

heuristic nature and not supported by rigorous proof. It 

is therefore necessary to assess its appropriateness 

using a simulation test outlined in the following. 

 

3.4. Test for the estimation procedure 

The estimation procedure is seen as a practical 

approach that is not underpinned by sophisticated 

mathematics but rather by direct testing. The latter is 

possible because the POS model can be used to 

generate fictitious failure data which can than be 

subjected to parameter estimation. Comparing the 

estimated parameters with the “true” parameters used 

in the simulation will display the balance of the 

strengths and weaknesses of the estimation procedure. 

The possibility to carry out such a test is a further 

advantage of simulation modelling. 

 

3.4.1. Failure data and comparison to estimated 

parameters 

From the data given Table 2, a set of 30 simulated CCF 

event data sets was produced, comprising on average 

some three CCF events each. 

 
Table 2. „True‟ parameters and derived CCF failure 

multiplicities (assuming CCF rate of 0,075 a
-1

) used for 

the model test 

Parameters a =  0,5 c =  2,0 Winst = 0,1 

Failure 
multiplicities 2-out-of-4 3-out-of-4 4-out-of-4 
Failure 
probabilities 1,3·10

-4
 a

-1 
8,3·10

-5
 a

-1
 9,7·10

-5
 a

-1
 

 

This exercise representing a straightforward test of 

principle, all simulated failure events were supposed to 

affect CCCG of size r = 4. The low number of 

simulated events corresponds to the well-known fact 

that CCF events as such are rather scarce. For the 

parameter estimation, only the number of CCF events, 

the number of failed and the number of affected – but 
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not failed – components in each event were used, 

together with the supposed observation time, given in 

component group years. To assess the predictive power 

of the model, the parameters estimated for each of the 

30 data sets were used to predict a 4-out-of-4 failure 

probability which was compared to the „fictitious 

reality‟ as given in Table 2. 

Figure 1. „True‟ vs. estimated CCF probabilities for 4-

out-of-4 failures 

 
The result is shown in Figure 1 above. In all cases, a 

CCF-detection time of 1.5 months has been assumed. 

 

Obviously, the estimation procedure gives rather 

satisfactory results. The conservatism introduced by 

the heuristic assumption of eqn. (18) results in a very 

moderate overestimation of the true value. 

 

3.4.2. Data base and quality of prediction  

In order to test the POS model‟s performance in case 

of a scarce data base, the estimation procedure as 

detailed above was repeated, this time using a data set 

of simulated CCF events based on a CCF impact rate 

corresponding, on the average, to one event in the 

observation period. Obviously, a data set with zero 

events does not make sense; therefore, in such cases 

the fictitious observation time was extended until an 

event was simulated. 
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Figure 2. Comparison of predicted vs. „true‟ 

unavailability‟s for 4-out-of-4 CCF on the basis of, on 

average, one or three events per database. Medians and 

standard error bars are given based on ten data sets for 

each case. 
As can be expected, the conservative assumption 

implicit in equation (18) takes more effect in this case. 

Figure 2 gives a comparison of predicted vs. „true‟ 

failure rates for 4-out-of-4 CCF. As is evident from the 

comparison, the predictions based on scarce data tend 

somewhat to the conservative side. 

On the other hand, it is demonstrated in Figure 3 how 

the estimation is improved if more events are included 

in the database for a representative example. The 

parameter Winst being rather sensitive to failure of all 

components is overestimated in the upper part of figure 

3 based on 3 events in the average in the data set. In 

the lower part of figure 3, it can be seen how the 

enhanced number of events improves the estimate. 
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Figure 3. Dependency of parameter estimation quality 

on the number of events in the database. 

Estimated parameter: Winst; true value: Winst = 0.1 (cf. 

Table 2). 

Upper diagram corresponds to 3 events on average, 

lower diagram corresponds to 10 events on average, 

showing improved estimation. 

 

4. Analysis of a highly redundant system with 

the POS model 

Hauptmanns [8] has published a challenging case study 

on a highly redundant CCCG. It concerns the 

combined impulse pilot valves which in German 

nuclear power plants govern the function of pilot 

operated safety or relief valves. For German Boiling 

Water Reactors (BWR), there are up to 22 such 

impulse pilot valves governing the function of the 

automatic depressurisation system (ADS).  

CF quantification for such highly redundant systems is 

demanding, due to the sparse base of observed events, 
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which, in addition, will mostly consist of events with 

only a limited number of failed components. Even in 

Hauptmanns‟ case, where the database consists of 

twelve events, there are only two cases with more than 

half of the CCCG actually failed (cf. Table 3 below). 

In [8], Hauptmanns compares CCF rates predicted for 

1-out-of-22 through 22-out-of 22 failure multiplicities 

using the classical binomial failure rate (BFR) model 

to those predicted with his improved multi-class 

binomial failure rate (MCBFR) model. For the latter, 

the events in the database are sorted into different 

classes according to engineering judgement, and 

attempts to estimate individual coupling factors p for 

all of the defined event classes. Detailed information 

on the models and the calculation method are in [8]. 

 

Table 3. Observed CCF and degradations for combined 

impulse pilot valves (failure mode: does not open); 

adapted* from [8] 

Event No. failed     No. degraded    CCCG     Operation 
No. components  components      size r       time TB [a]  

1 2  0  9 9 
2 6  2  8 10 
3 2  0  22 7 
5* 1  15  16 9 
6 2  5  16 7 
7 2  10  12 6 
8 7  1  8 10 
9 1ª  13ª  14 9 
11* 2  6  12 6 
12 2  0  4 9 

* H‟s events # 4 and 10 were omitted because with 1 failed 
and 0 degraded but not failed components they do not 
correspond to the definition of a CCF used in this paper, 
which is based on at least two components impacted by the 
common cause. 
ª In H‟s event # 9, one of the 14 components found degraded 
is assumed failed, because the analyses with the POS model 
presented here do not handle „zero failure‟ events. 

 

In case there is at least one CCF event in the database 

where all or nearly all components of the CCCG were 

failed, the MCBFR model can be expected to yield less 

unrealistic failure rates for high failure multiplicities 

than the classical BFR model.  

Using the raw data as given in [8] with the exception 

of omitting events #4 and #10 and assigning event #9 

one failed and 13 affected components instead of 0 

failed and 14 affected, cf. table 3 – the CCF rates for a 

CCCG of size 22 were calculated. Total operation time 

of 165 component group years was used in estimating 

the CCF rate. 

The results obtained with the POS model do not 

exhibit the unrealistic low failure rates for higher 

multiplicities. They do not coincide with the MCBFR 

results but are comparable especially in the range of 

higher failure multiplicities. Key difference to the 

MCBFR approach is that for the POS application no 

decomposition of the event base had to be performed. 

The approach is integral. It can be concluded that the 

POS model is a candidate for CCF analyses of highly 

redundant systems. 
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Figure 4. CCF-rates for pilot valves in German NPP 

according to Hauptmanns for the (BFR) and the 

(MCBFR) model. The results with the POS model 

have been obtained with the parameter estimation 

procedure described in this paper. 

 

5. Calculating alpha-factors with the POS 

model 

In [13], approaches to CCF quantification are outlined, 

especially the use of parametric models. In the report 

[12], common cause failure parameter estimations have 

been provided for some 40 different component types, 

various failure modes and common cause component 

group sizes from two up to six.  One of the models for 

which parameter distributions have been derived is the 

Alpha-Factor Model. From the point of view of 

demonstrating the usefulness of the POS model, this 

large amount of systematically derived information 

was seen as a possibility to apply POS and compare to 

results obtained with established methods. 

As pointed out before, for the POS parameter 

estimation information is required on the number of 

components, which are affected by the event. This kind 

of information is not available in [12]. Therefore, for 

this exercise a simplified approach has been selected 

[5].  

The alpha factor (k,l) is by definition the probability 

that in a CCF component group of size l exactly k 

components have failed as consequence of a CCF basic 

event. Hence, the quantities are normalized with 

respect to the failure multiplicity k = 1,2, ...l. The first 

simplifying assumption is that the failures with k equal 

to 2 and greater are determined by dependent failures 

only. The conditional probabilities w(k,l) for these 

events are calculated with the POS model. In [7], the 

numbers of independent and dependent events are 

given and thus the ratio q of dependent to total number 

of events is at hand. The alpha factors than can be 

calculated as follows: 
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Deviation X of the alfa factors α(k,k)  
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   (k,l) = w(k,l)  q  + (1 – q)  (k,1)                      (19) 

 

   (k,1) = 0 for k > 1 and (1,1) = 1                        (20) 

 
The selection of POS-parameters is – as pointed out 

before – simplified. The values of Winst = 0.1 and of r0 

= 3 are taken as default values throughout the exercise. 

These values are typical values based on other 

applications. Parameter a is the fitted such that (4,4) 

is equal to the value tabulated in [12] for the 

component type and failure mode under consideration.  

This program has been carried out for six different 

combinations of components and failure modes. These 

were selected primarily based on large numbers of 

dependent failures to make sure that the comparison 

has a solid statistical basis. Furthermore, a mix of 

technically different components has been chosen. 

Furthermore, only those components were included for 

which CCF group sizes up to 6 are covered in [12].  

For the comparison with the empirical data from [12] a 

metric for the deviation of the quantities is required. In 

[12], the mean, but also the 5-, the 50- and the 95-

percentile of the alpha factor distributions are 

displayed. This suggested to use the logarithm of the 

ratio of the alpha factor derived from the POS model to 

the 50-percentile from [12], divided by logarithm of 

the ratio of the values of the 95-percentile to the 50-

percentile. This means a deviation X = 1 if the 

calculated value equals the value of the 95-percentile  

 

   X = log ( POS / 50) / log ( 95 / 50).                   (21) 

 

Eq. (21) holds for values of POS larger than the 

median of the distribution, the analogous measure is 

used for POS smaller than the median. In that case, the 

deviation X = -1 is obtained if the calculated value 

equals the value of the 5-percentile. 

A similar picture is obtained by considering complete 

CCFs (failure of all components). This is displayed in 

Figure 5. It is not surprising that the agreement is 

better for (5,5) and (3,3) than for (2,2) as the 

parameter adjustment was done for (4,4). For small 

sizes of the component group the deviations are larger. 

The assumption that the failure multiplicities > 1 are 

due to dependent failures only might here be wrong 

and thus lead to greater deviations. 

Considering the severe simplifications that were made 

in the exercise, the results obtained with the POS 

model adjusting only one of three possible parameters 

are satisfactory especially for high failure 

multiplicities.  

 

 

 

 

Figure 5. Deviation X of the alfa factors (k,k) 

calculated with the POS-model from values tabled in 

[13].  

 

6. Summary, conclusions and outlook 

The POS model for CCF quantification is based on the 

following model structure: 

 Time of CCF impact, simulated with a constant 

 CCF impact rate, 

 Number of components of the CCCG affected by 

 the impact and subsequently failing immediately or 

 time-delayed, 

 Times of failure of the impacted components, and 

 Time of detection of the CCF process by 

  inspection or functional testing. 

As a last step to prepare practical application of the 

model, a procedure for estimating the four free model 

parameters – rate of CCF impact, parameters a and c 

determining the probabilities of the number of 

impacted components and fraction of instantaneous 

failures – has been suggested and tested. 

The POS model can be used to generate fictitious 

failure data which can than be subjected to parameter 

estimation. Comparing the estimated parameters with 

the “true” parameters used in the simulation gave a 

good agreement with a slightly conservative tendency. 

The low number of events – roughly three on the 

average – on which the estimation has been based, 

makes this observation remarkable. In situations with 

even less events the conservative overestimate of the 

unavailability becomes more visible but still results are 

not totally out of bounds.  

CCF analyses for pilot valves in German nuclear 

power plants present a real challenge as component 

group seizes range up to 22. The POS application has 

no problem whatsoever with this situation. It does not 

show the totally unrealistic behaviour predicted by the 

BFR-model. The results show some agreement with a 

multi-class-BFR approach suggested by Hauptmanns 
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without the need to decompose the observed events 

into different technical classes. 

As a bottom line, the results obtained increase the 

confidence into the model and the parameter 

estimation procedure. The next steps will be directed 

towards enhancing the number of applications. This 

work will be directed to areas of application where 

CCF failure data covering many component types and 

a larger range of component group sizes have been 

produced with well established models, [12] cf. e. g.  

In such cases, parameter estimates can be obtained 

from data derived from events in component group 

sizes up to 4 and extrapolated to higher degrees of 

redundancy. This will constitute a real test of the 

model and the parameter estimation procedure. 
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