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Abstract

The problem of determining an optimal training schedule for locally recurrent neural net-
work is discussed. Specifically, the proper choice of the most informative measurement
data guaranteeing the reliable prediction of neural network response is considered. Based
on a scalar measure of performance defined on the Fisher information matrix related to
the network parameters, the problem was formulated in terms of optimal experimental
design. Then, its solution can be readily achieved via adaptation of effective numerical
algorithms based on the convex optimization theory. Finally, some illustrative experi-
ments are provided to verify the presented approach.

1 Introduction

A training of neural network, being the dynamic
data-driven process requires a proper selection of
measurement data to provide satisfactory represen-
tation of the modelled system behaviour [7, 12]. In
practice, this is equivalent to determination of a lim-
ited number of observational units obtained from
the experimental environment in such a way as to
obtain the best quality of the system responses.

The importance of input data selection has al-
ready been recognized in many application domains
[28]. One of the most stimulating practical exam-
ples is Fault Detection and Identification (FDI) of
industrial systems [11, 15]. A crucial issue among
the fundamental tasks of failure protection systems
is to provide reliable diagnosis of the expected sys-
tem state. But to produce such a forecast, an accu-
rate model is necessary and its calibration requires
parameter estimation. Preparation of experimen-
tal conditions in order to gather informative mea-
surements can be very expensive or even impossi-
ble (e.g. for the faulty system states). On the other
hand, the data form real-world system may be very

noisy and using all the available data may lead to
significant systematic modelling errors. In result,
we are faced with the problem of optimal choice
of the available training data in order to obtain the
most accurate model.

Although it is well known that the training
quality for neural networks heavily depends on the
choice of input sequences, surprisingly, there have
been relatively few contributions to experimental
design for those systems and, in addition, they fo-
cus mainly on the multi-layer perceptron class of
networks [2, 5, 30, 9] or radial basis function net-
works [24, 4]. The applicability of such a static type
of networks for the modelling of dynamic systems
is rather limited. Recently, the problem of optimal
selection of input sequences in the context of dy-
namic neural networks has been discussed by the
authors in [16, 15], where the problem is formulated
in spirit of optimum experimental design theory for
lumped systems [6, 31, 3]. However, the simulation
results presented therein concern the training of the
single dynamic neuron only. The contribution of
this work is to extend this approach to the locally re-
current neural network with one hidden layer which
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can be applied in real-world systems. Moreover, to
illustrate the delineated approach some experiments
are performed using real process data.

2 Dynamic Neural Networks

Figure 1. State-space form of the i-th neuron with
IIR filter.

The topology of the neural network considered
is analogous to that of the multi-layered feedfor-
ward one and the dynamics are reproduced by the
so-called dynamic neuron models. Such neural net-
works are called locally recurrent globally feedfor-
ward [25, 13, 15]. Dynamic properties of the model
are achieved by introducing an Infinite Impulse Re-
sponse (IIR) filter into a neuron structure. As a
consequence of incorporating an IIR filter between
input weights and an activation function, the neu-
ron can reproduce its own past inputs and activa-
tions using two signals: the input u(k) and the out-
put y(k). The state-space representation of the neu-
ron is shown in Figure 1. In this paper a discrete-
time dynamic network with n time varying inputs
and m outputs is discussed. The description of such
kind of a dynamic network with v hidden dynamic
neurons, each containing an r-th order IIR filter, is
given by the following nonlinear system:

{
x(k+1) = Ax(k)+Wu(k)
y(k) =Cσ(Bx(k)+Du(k)−g)T , (1)

where N = v × r represents the number of model
states, x ∈ RN is the state vector, u ∈ Rn, y ∈
Rm are input and output vectors, respectively, A ∈
RN×N is the block diagonal state matrix (diag(A) =
[A1, . . . ,Av]), W ∈ RN×n (W = [w11T , . . . ,wv1T ]T ,
where wi is the input weight vector of the i-th hid-
den neuron), and C ∈ Rm×v are the input and out-
put matrices, respectively, B ∈ Rv×N is a block
diagonal matrix of feedforward filter parameters
(diag(B) = [b1, . . . ,bv]), D ∈ Rv×n is the transfer
matrix (D= [b01wT

1 , . . .b0vw
T
v ]

T ), g= [g1 . . .gv]
T de-

notes the vector of biases, and σ : Rv → Rv is the
nonlinear vector-valued function. The presented
structure can be viewed as a network with a sin-
gle hidden layer containing v dynamic neurons as
processing elements and an output layer with linear
static elements. For structural details, the interested
reader is referred to [15, 14, 17].

3 Optimal Sequence Selection
Problem

3.1 Statistical Model

Let y j = y(u j;θ) = {y(k;θ)}L j
k=0 denote the se-

quence of network responses for the sequence of
inputs u j = {u(k)}L j

k=0 related to the consecutive
time instants k = 0, . . . ,L j < ∞ and selected from
among an a priori given set of input sequences U =
{u1, . . . ,uP}. Here θ represents a p-dimensional un-
known network parameter vector which must be es-
timated using observations of the system (i.e. filter
parameters, weights, slope and bias coefficients).

From the statistical point of view, the sequences
of observations related to P input sequences may be
considered as

z j(k) = y j(k;θ)+ ε j(k), k = 0, . . . ,L j, j = 1, . . . ,P,
(2)

where z j(k) is the output and ε j(k) denotes the mea-
surement noise. It is customary to assume that
the measurement noise is zero-mean, Gaussian and
white, i.e.

E[εi(k)ε j(k′)] = v2δi jδkk′ , (3)

where v > 0 is the standard deviation of the mea-
surement noise, δi j and δkk′ standing for the Kro-
necker delta functions.

An additional substantial assumption is that the
training of the neural network, equivalent to the es-
timation of the unknown parameter vector θ, is per-
formed via the minimization of the least-squares
criterion

θ̂ = arg min
θ∈Θad

P

∑
j=1

L j

∑
k=0

‖z j(k)− y j(k;θ)‖2, (4)

where Θad is the set of admissible parameters. It be-
comes clear that since y j(k;θ) strongly depends on
the input sequences u j it is possible to improve the
training process through appropriate selection of in-
put sequences.
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3.2 Sequence Quality Measure and Exper-
imental Design

In order to properly choose the input sequences
which will be most informative for the training of
the dynamic network, a quantitative measure of the
goodness of parameter identification is required. A
reasonable approach is to choose a performance
measure defined on the Fisher Information Matrix
(FIM), which is commonly used in optimum exper-
imental design theory [1, 3, 29, 27].

Sequences which guarantee the best accuracy of
the least-squares estimates of θ are then found by
choosing u j, j = 1, . . . ,P so as to minimize some
scalar measure of performance Ψ defined on the av-
erage Fisher information matrix given by [19]:

M =
1

PL j

P

∑
j=1

L j

∑
k=0

H(u j,k)HT (u j,k), (5)

where

H(u,k) =
(

∂y(u,k;θ)
∂θ

)

θ=θ0
(6)

stands for the so-called sensitivity matrix, θ0 being
a prior estimate to the unknown parameter vector θ
which can be obtained from previous experiments
or alternatively some known nominal values can be
used [26, 23, 19, 27].

Such a formulation is generally accepted in op-
timum experimental design for nonlinear dynamic
systems, since the inverse of the FIM constitutes,
up to a constant multiplier, the Cramér-Rao lower
bound on the covariance matrix of any unbiased es-
timator of θ [29, 1], i.e.

cov θ̂ � M−1. (7)

Since the class of dynamic networks considered
in this paper follows the universal approximation
property [15], a proper representation of the system
is only a matter of a network structure. Because
a structure optimization is far beyond the scope of
this work, we can assume in the following that the
network has ability to properly represent the dy-
namics of the process considered and the parameter
estimates are unbiased. If it is not a case we have to
incorporate the bias terms into the (7), cf. [22].

Moreover, under somewhat mild assumptions
[23, 27], it is legitimate to assume that our estima-
tor is efficient in the sense that the parameter covari-
ance matrix achieves the lower bound.

As for criterion Ψ, various choices are proposed
in the literature [29, 3, 1], but the most popular
choice is so-called D-optimality (determinant) cri-
terion:

Ψ(M) =− logdetM; (8)

which minimizes the volume of the uncertainty el-
lipsoid for the parameter estimates. The introduc-
tion of an optimality criterion renders it possible to
formulate the sensor location problem as an opti-
mization problem:

Ψ
[
M(u1, . . . ,uP)

]
−→ min (9)

with respect to u j, j = 1, . . . ,P belonging to the ad-
missible set U.

The direct consequence of the assumption (3) is
that we admit replicated input sequences, i.e. some
u js may appear several times in the optimal solution
(because independent observations guarantee that
every replication provides additional information).
Consequently, it is sensible to reformulate the prob-
lem so as to operate only on the distinct sequences
u1, . . . ,uS instead of u1, . . . ,uP by relabelling them
suitably. To this end, we introduce r1, . . . ,rS as the
numbers of replicated measurements corresponding
to the sequences u1, . . . ,uS. In this formulation, the
uis are said to be the design or support points, and
p1, . . . , pS are called their weights. The collection
of variables

ξP =

{
u1, u2, . . . , uS

p1, p2, . . . , pS

}
, (10)

where pi = ri/P, P = ∑S
i=1 ri, is called the exact de-

sign of the experiment. The proportion pi of obser-
vations performed for ui can be considered as the
percentage of experimental effort spent at that se-
quence. Hence, we are able to rewrite the FIM in
the form

M(ξP) =
S

∑
i=1

pi
1
Li

Li

∑
k=0

HT (ui,k)H(ui,k). (11)

Here the pis are rational numbers, since both ris
and P are integers. This leads to a discrete numeri-
cal analysis problem whose solution is difficult for
standard optimization techniques, particularly when
P is large. A potential remedy for this problem
is to extend the definition of the design. This is
achieved through the relaxation of constraints on
weights, allowing the pis to be considered as real
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numbers in the interval [0,1]. This assumption will
be also made in what follows. Obviously, we must
have ∑S

i=1 pi = 1, so we may think of the designs
as probability distributions on U. This leads to the
so-called continuous designs, which constitute the
basis of the modern theory of optimal experiments
[3, 1]. It turns out that such an approach drasti-
cally simplifies the design, and the existing round-
ing techniques [3]justify such an extension. Thus,
we shall operate on designs of the form

ξ =

{
u1, u2, . . . , uS

p1, p2, . . . , pS
;

S

∑
i=1

pi = 1

}
, (12)

which concentrates Pp1 observational sequences
for u1 (so we repeat approximately Pp1 times the
presentation of this sequence during the training of
the network), Pp2 for u2, and so on. Then we may
redefine optimal design as a solution to the opti-
mization problem

ξ� = arg min
ξ∈Ξ(U)

Ψ[M(ξ)], (13)

where Ξ(U) denotes the set of all probability distri-
butions on U.

3.3 Characterization of Optimal Solutions

In the remainder of this chapter we shall as-
sume that H ∈ C(U;Rp). The following charac-
terizations of the optimal design ξ� can be derived
in a rather straightforward manner from the general
results given in [19, 20] or [27].

Theorem 1 An optimal design exists comprising
no more than p(p+1)/2 support sequences. More-
over, the set of optimal designs is convex.

The practical importance of this property cannot be
underestimated since we can restrict our attention to
the designs with limited number of sequences what
significantly reduces the complexity of resulting op-
timization problem. But the next theorem is essen-
tial for the approach considered and provides a tool
for checking the optimality of designs. It is usually
called an equivalence theorem [10].

Theorem 2 Equivalence theorem The following
conditions are equivalent:

(i) the design ξ� minimizes Ψ(M) =− lndetM(ξ),

(ii) the design ξ� minimizes maxui∈U φ(ui,ξ), and

(iii) maxui∈U φ(ui,ξ) = p,

and the so-called sensitivity function

φ(ui,ξ) = trace
(

1
Li

Li

∑
k=0

HT (ui,k)M−1H(ui,k)
)

is of paramount importance here as it can be in-
terpreted in terms of average variance of the esti-
mated system response being the natural measure
for the quality of the training process. From the
result above it comes immediately that suppress-
ing the maximal level of the prediction variance is
equivalent to the optimization of the D-optimality
criterion. This paves the way to almost direct ap-
plication of numerous efficient algorithms known
from experimental design theory to the discussed
problem. Since analytical determination of optimal
designs is difficult or impossible even for very sim-
ple network structures, some iterative design proce-
dures will be required. A dedicated computational
scheme for that purpose is given in the next section.

4 Selection of Training Sequences

It is clear that design problem (13) is highly
nontrivial due to its complexity. Moreover, some
additional design factors as sequences lengths, sam-
pling time or initial conditions also can influence
the quality of training and may be a part of opti-
mization process. In order to somewhat simplify the
problem and reduce its complexity, in what follows,
we assume that the set of admissible sequences U
is finite.

In such a framework, a particularly simple and
efficient computational algorithm can be derived
based on the mapping T : Ξ(U) → Ξ(U) defined
by

T ξ =

{
u1, . . . , uS

p1φ(u1,ξ)/p, . . . , pSφ(uS,ξ)/p

}
.

(14)

From Theorem 2 it follows that a design ξ� is D-
optimal if it is a fixed point of the mapping T , i.e.

T ξ� = ξ�. (15)

Therefore, the following algorithm can be used as
a generalization of that proposed in [21, p.139] for
the classical optimum experimental design problem
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consisting in iterative computation of a D-optimum
design on a finite set:

Step 1. Guess a discrete starting design ξ(0)

such that p(0)i > 0 for i = 1, . . . ,S. Choose some
positive tolerance η � 1. Set �= 0.

Step 2. If the condition

φ(ui,ξ(�))
p

< 1+η, i = 1, . . . ,S

is satisfied, then STOP.

Step 3. Construct the next design ξ(k+1) by de-
termining its weights according to the rule

p(�+1)
i = p(�)i

φ(ui,ξ(�))
m

, i = 1, . . . ,S,

increment k by one and go to Step 2.

Its important to include all admissible input se-
quences as a support The convergence result of this
scheme can be found in [27].

5 Examples

5.1 DC motor

Simulation setting.

Experiments were carried out using the AMIRA
DR300 laboratory system. This laboratory system
is used to control the rotational speed of a DC motor
with a changing load. This is the single input single
output system.

Figure 2. Amira DR300 laboratory stand.

A separately excited DC motor was modelled
by using the dynamic neural network presented
briefly in Section 2. The output signal was the rota-
tional speed (T ) measured by an analog tachometer.
The input signal (U) was selected as a sum of sinu-
soids:

U(k) =3sin(2π1.7k)+3sin(2π1.1k−π/7)

+3sin(2π0.3k+π/3)
(16)

The structure of the neural network model (1) was
selected arbitrarily and had the following structure:
one input, three IIR neurons with second order
filters and hyperbolic tangent activation functions,
and one linear output neuron. Taking into account
that a neural network is a redundant system, some of
its parameters are not identifiable. In order to apply
optimum experimental design to the neuron train-
ing, certain assumptions should be made. So, with-
out loss of generality, let us assume that the feedfor-
ward filter parameter b0 for each hidden neuron is
fixed to the value of 1. This reduces the dimension-
ality of estimation and assures the identifiability of
the rest of the parameters (i.e. it assures that the
related FIM is non-singular).

At the beginning, the network was preliminar-
ily trained in order to obtain the initial parameters
estimates. Feeding the laboratory system with sig-
nal (16), a learning set containing 500 samples was
formed, and then the training process was carried
out off-line for 2000 steps using the Extended Dy-
namic Back-Propagation (EDBP) algorithm [16].
At the second stage of the training process the learn-
ing data were split into 20 time sequences, contain-
ing 150 consecutive samples each. The design pur-
pose was to choose from this set of all learning pat-
terns the most informative sequences (in the sense
of D-optimality) and their presentation frequency
(i.e. how often they should be repeated during the
training). To determine the optimal design, a nu-
merical routine from Section 4 was implemented in
the form of the MATLAB program. All the admis-
sible learning sequences taken with equal weights
formed the initial design. The accuracy of the de-
sign algorithm was set to η = 10−2.

Results

The network was preliminarily trained and the
initial network parameters estimates are presented
in the second column of Table 1. In this case Sum
of Squared Errors (SSE) calculated using the train-
ing set was equal to 5.7001. After that, the train-
ing of the network was continued in two ways.
The first way was to use the optimal training sets
selected during the optimum experimental design
phase. The second way was to use random se-
quences as the training ones. The purpose of these
experiments is to check the quality of parameter
estimation. In the case considered here the opti-
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Table 1. Sample mean and the standard deviation of parameter estimates.

para- initial sample mean standard deviation

meter value random design optimal design random design optimal design

w1 0.3232 0.2867 0.2894 0.0104 0.0028
w2 0.9000 0.9105 0.9082 0.0034 0.0009
w3 0.0758 0.0898 0.0789 0.0194 0.0027
b11 0.8328 0.8187 0.8195 0.0040 0.0011
b21 -0.6316 -0.6053 -0.6072 0.0078 0.0019
b31 0.8558 0.8616 0.8581 0.0079 0.0011
b12 0.7892 0.7742 0.7747 0.0042 0.0011
b22 0.0631 0.0910 0.0897 0.0082 0.0019
b32 0.5745 0.5808 0.5812 0.0076 0.0011
a11 0.1258 0.1302 0.1301 0.0012 0.0003
a21 0.0853 0.0807 0.0812 0.0015 0.0004
a31 -0.4171 -0.4196 -0.4170 0.0055 0.0015
a12 0.1656 0.1703 0.1703 0.0012 0.0003
a22 0.0266 0.0217 0.0221 0.0016 0.0004
a32 -0.5566 -0.5587 -0.5562 0.0052 0.0015
g1 -0.3794 -0.4057 -0.4024 0.0132 0.0055
g2 -0.3978 -0.3599 -0.3673 0.0206 0.0089
g3 0.3187 0.3040 0.3136 0.0189 0.0008
c1 -0.4908 -0.4905 -0.4893 0.0081 0.0032
c2 0.7773 0.7708 0.7716 0.0078 0.0035
c3 0.4540 0.4438 0.4408 0.0075 0.0006

mal design consists of the sequences 5,6,8 and 16.
For a selected design, each distinct sequence was
replicated proportionally to its weight in the de-
sign with total number of replications assumed to
be P = 10. For example, if the optimal design con-
sists of the four aforementioned sequences with the
weights 0.3, 0.1, 0.3 and 0.3, respectively, then dur-
ing the training the 5-th, 8-th and 16-th sequences
were used three times each, and the 6-th sequence
only once (in random order). The training proce-
dure was repeated 10 times using different measure-
ment noise affecting the output of the system. The
statistics are presented in Table 1. As we can see,
the application of training sets selected according
to the optimal design leads to the better accuracies
of parameter estimates than in the case of randomly
selected training sets. It is observed that the stan-
dard deviation of each network parameter has lower
value in the case of the optimal design what means
the more reliable estimate of a given parameter.

The uncertainty of the network response predic-
tion is examined based on the parameter estimates
determined using the optimal and random designs.

The testing phase of each of 10 realizations of lo-
cally recurrent network was performed using 1000
samples different from the training ones. The re-
sults of testing are presented in Table 2.

Table 2. Results of network testing.

Network Random Optimal
realization design design

1 29.7367 31.0998
2 27.4287 26.5564
3 42.4463 26.4758
4 85.8052 26.6182
5 99.5833 26.4214
6 82.9475 26.4577
7 35.3615 26.6521
8 29.6130 26.5550
9 26.8438 26.5030

10 26.2403 26.2885

Looking at these results one can state that using
random design it is possible to obtain a good gen-
eralization of the network, e.g. networks 9 and 10,
but the results of training are not repetitive as in the
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case of optimal design when 9 of 10 training run
give the similar good results. This fact, in connec-
tion with the plot of response prediction variance
(Figure 2) clearly shows that training based on opti-
mal learning sequences leads to greater reliability of
the network response as the maximal variance level
can be significantly reduced.

Figure 3. Variances of the model response
prediction for the optimum design (diamonds) and

random design (circles)

5.2 Tunnel Furnace

Simulation setting.

As an experimental testbed for the second ex-
ample a laboratory model of tunnel furnace has
been used (Figure 4).

Figure 4. A laboratory system of tunnel furnace
with the RX3i controllers and operational panel

This is the multi input multi output system.
It contains four electric heaters which are con-
trolled with the continuous input signals and four
resistance detectors (RTD) measuring temperature
gradient along the furnace chamber. The control

system is based on the industrial programmable
logic controllers PACSYSTEMS RX3i produced by
GE FANUC Intelligent Platforms and supplemented
with touchpad operational panel QUICKPANEL CE
working under Microsoft Windows CE .NET 5. As
the input signals the random step functions were se-
lected in order to provide the persistent excitation of
the object.

The system to be modelled has three inputs
(the fourth input is reserved for the diagnostic pur-
poses) and four outputs. In order to model the tun-
nel furnace the MIMO representation was decom-
posed into four MISO models. The structure of
each neural network model (1) was selected arbi-
trarily and had the following structure: three inputs,
three IIR neurons with second order filters and hy-
perbolic tangent activation functions, and one lin-
ear output neuron. Once again, let us assume that
the feedforward filter parameter b0 for each hidden
neuron is fixed to the value of 1. Firstly, each net-
work is trained in a classical way. Training set con-
tains 500 samples and the training process was car-
ried out off-line for 100 steps using the Levenberg-
Marquardt (LM) algorithm. The LM training can
be easily implemented based on the EDBP algo-
rithm (see [8]). At the second stage of the training
process the learning data were split into 30 time se-
quences, containing 100 consecutive samples each.
The design purpose was to choose from this set of
all learning patterns the most informative sequences
(in the sense of D-optimality) and their presentation
frequency.

Results

The modelling quality in the form of SSE cal-
culated for each initially trained neural model us-
ing the testing set containing 3000 samples are pre-
sented in the first column of Table 3. It is obvi-
ous that modelling results are not satisfactory with
exception of the neural network modelling 4th out-
put of the system. In order to achieve more reli-
able models, the training is continued in two ways.
The first way is to use the optimal training sets
selected during the optimum experimental design
phase. The second way is to use random sequences
as the training ones (a method in-between cross-
validation and bootstrap techniques). The purpose
of these experiments is to check how different meth-
ods of input data presentation influence on the qual-
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ity of the models. The optimally selected training
sequences with weights assigned to them are pre-
sented in Figure 5. In each case considered, the de-
sign algorithm selected 9 or 10 sequences out of 30
as the most informative. Analyzing the distribution
of the sequences one can say that models for each
system output require different set of training se-
quences although some sequences are common for
all models (16th, 22th, 28th, 30th), however, have
different impact on training taking into account pre-
sentation frequency. In the case considered here, for
a selected design, each distinct sequence is repli-
cated proportionally to its weight in the design with
total number of replications assumed to be P = 20.
The training procedure was repeated 10 times and
the modelling quality, in the form of SSE calculated
using 3000 testing samples, for the best achieved
models are presented in the second column of Table
3. Outputs of the tunnel furnace and coresponding
model outputs are shown in Figure 6. As one can
see there neural models mimic the behaviour of the
system pretty well, however some problems are ob-
served in the case of the second model (the worst
modelling quality). Summarizing, once again the
application of training sets selected according to the
optimal design leads to the better network general-
ization than in the case of classical training.

Table 3. Quality of neural models

Model Initial Optimal Random
model design design

output 1 34.44 1.93 2.83
output 2 11.79 2.6 3.69
output 3 34.78 0.8658 5.96
output 4 0.37 0.064 0.093

Results achieved using the optimal experimen-
tal design are compared with the random designs.
In this case the training sequences were selected
randomly with total number of presentations equal
to P = 20. The training procedure was repeated
10 times and the modelling quality, in the form of
SSE calculated using 3000 testing samples, for the
best achieved models are presented in the third col-
umn of Table 3. Using random designs, a better
modelling quality was obtained than using classi-
cal training. It is caused by the fact that such a
way of training sequences presentation is something
in-between the cross-validation and bootstrap tech-
niques. However, comparing results achieved using

random designs with those achieved using optimal
designs one can see that the better results are ob-
tained using the latter method, especially in the case
of the third output of the system.

6 Conclusions

We have addressed the problem of selecting op-
timal training sequences in view of accurate mod-
elling of responses for locally recurrent neural net-
works. Although the problem of qualitative choice
of learning data is well recognized and has been ap-
proached from various angles since the mid-1990s,
there are still few systematic and versatile methods
for its solution. In this work we started from the
formulation, in which the training data comprises
finite number of time sequences and the aim is to
select the frequencies of their presentations as to
maximize the quality of the training process. The
problem formulated in terms of the minimization of
the variance of the network response prediction can
be translated to maximizing the determinant of the
Fisher information matrix associated with the esti-
mated network parameters.

Obtained results show that some well-known
methods of optimum experimental design theory for
linear regression models can be easily extended to
the setting of the optimal training sequence selec-
tion problem for dynamic neural networks. The
clear advantage of the proposed approach is that the
quality of the training process measured in terms of
the uncertainty of network response prediction can
be significantly improved with the same effort spent
on training or, alternatively, training process com-
plexity can be reduced without degrading network
performance.

The proposed approach was also tested using
other network structures. Experiments were carried
out for a locally recurrent network with two hidden
neurons as well as for a network with five hidden
neurons. In each case considered, the results are
similar taking into account reliability of the param-
eters estimates.

It is important to express that delineated ap-
proach is dedicated to situation where it is possible
to replicate some process trials (e.g., as for the qual-
ity tests or system identification experiments) for
the same input data or we have redundant sensors
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Figure 5. Optimal sequences weights histograms: the first output (a), second output (b), third output (c),
fourth output (d)
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Figure 6. Responses of the tunnel furnace (solid) and model (dotted): the first output (a), second output
(b), third output (c), fourth output (d)
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providing additional observations. From practical
point of view, often it may be very difficult to pro-
vide such experimental conditions. In such a case
we have to revert to other algorithmic techniques
to imply some additional constraints on the exper-
imental design. For example an application of ex-
change type algorithms for determination of infor-
mative training sequences based on the concept of
directly constrained design measures provides very
promising results [18]. In such an approach the
frequencies of presentation are fixed what signifi-
cantly simplifies the implementation of training and
broaden the practical application area.

Obviously, there is still necessity for further re-
finements and theoretical developments. We can
mention the following points which are the matter
of our current research:

– Sequential design techniques will be investi-
gated in order to provide more robust design of
training sequences with respect to network pa-
rameter misspecification. This should pave the
way towards on-line training schemes.

– Based on the optimal control techniques it is
possible to state the problem in terms of a proper
dynamic design of input time sequences which
provide the best conditions of training process.
This, however, is a very challenging problem as
it quickly leads to non-convex nonlinear opti-
mization tasks with nonlinear constraints.
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