Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Temperature rise of the hub motor in distributed drive electric vehicles (DDEVs) under long-time and overload operating conditions brings parameter drift and degrades the performance of the motor. A novel online parameter identification method based on improved teaching-learning-based optimization (ITLBO) is proposed to estimate the stator resistance, 𝑑-axis inductance, 𝑞-axis inductance, and flux linkage of the hub motor with respect to temperature rise. The effect of temperature rise on the stator resistance, 𝑑-axis inductance, 𝑞-axis inductance, and magnetic flux linkage is analysed. The hub motor parameters are identified offline. The proposed ITLBO algorithm is introduced to estimate the parameters online. The Gaussian perturbation function is employed to optimize the TLBO algorithm and improve the identification speed and accuracy. The mechanisms of group learning and low-ranking elimination are established. After that, the proposed ITLBO algorithm for parameter identification is employed to identify the hub motor parameters online on the test bench. Compared with other parameter identification algorithms, both simulation and experimental results show the proposed ITLBO algorithm has rapid convergence and a higher convergence precision, by which the robustness of the algorithm is effectively verified.
Czasopismo
Rocznik
Tom
Strony
99--115
Opis fizyczny
Bibliogr. 36 poz., rys., tab., wykr., wzory
Twórcy
autor
- Automotive Engineering Research Institute, Jiangsu University, Zhenjiang 212013, China
autor
- Beijing Institute of Space Launch Technology, Beijing 100076, China
autor
- Beijing Institute of Space Launch Technology, Beijing 100076, China
autor
- Automotive Engineering Research Institute, Jiangsu University, Zhenjiang 212013, China
autor
- Automotive Engineering Research Institute, Jiangsu University, Zhenjiang 212013, China
Bibliografia
- [1] Sun, X., Hu, C., Lei, G., & Yang, Z., & Zhu, J. (2020). Speed sensorless control of SPMSM drives for EVs with a binary search algorithm-based phase-locked loop. IEEE Transactions on Vehicular Technology, 69(5), 4968-4978. https://doi.org/10.1109/TVT.2020.2981422
- [2] L, S. Q., Ding, X. M., & Yu, B. (2022). Optimal control strategy of efficiency for dual motor coupling drive system of pure electric vehicle. Journal of Jiangsu University (Natural Science Edition), 43(1), 1-7.
- [3] Li, Y., Zhang, B., & Xu, X. (2018). Robust control for permanent magnet in-wheel motor in electric vehicles using adaptive fuzzy neural network with inverse system decoupling. Transactions of the Canadian Society for Mechanical Engineering, 42(3), 286-297. https://doi.org/10.1139/tcsme-2018-0027
- [4] Liu, D., Wang, J., & Wang, S. (2022). Coordinated motion control and event-based obstacle-crossing for four wheel-leg independent motor-driven robotic system. Mechatronics, 81, 102697. https://doi.org/10.1016/j.mechatronics.2021.102697
- [5] Li, Y., Wu, H., & Zhang, B. H. (20) Frontier techniques and prospect of in-wheel motor for electric vehicle. Journal of Jiangsu University (Natural Science Edition), 40(03), 261-268.
- [6] Besançon, G., Voda, A., & Popescu, A. (2022). Closed-loop-based observer approach for tunneling current parameter estimation in an experimental STM. Mechatronics, 83, 102743. https://doi.org/10.1016/j.mechatronics.2022.102743
- [7] Jiang, H., Zhou, Y., Xue, H. T., & Li, Z. X. (2021). Sequential diagnosis method for bearing fault of in-wheel motor based on CDI and AHNs. Journal of Jiangsu University (Natural Science Edition), 42(01), 15-21.
- [8] Tang, X., Yang K., Wang, H., Wu, J., Qin, Y., Yu, W., & Cao, D. (2022). Prediction-Uncertainty-Aware Decision-Making for Autonomous Vehicles. IEEE Transactions on Intelligent Vehicles, 7(4), 849-862. https://doi.org/10.1109/TIV.2022.3188662
- [9] Mahmud, M. H., Wu, Y., & Zhao, Y. (2020). Extremum Seeking-Based Optimum Reference Flux Searching for Direct Torque Control of Interior Permanent Magnet Synchronous Motors. IEEE Transactions on Transportation Electrification, 6(1), 41-51. https://doi.org/10.1109/TTE.2019.2962327
- [10] Tang X., Chen, J., Liu, T., Qin, Y., & Cao D. (2021). Distributed Deep Reinforcement Learning-Based Energy and Emission Management Strategy for Hybrid Electric Vehicles. IEEE Transactions on Vehicular Technology, 70(10), 9922-9934. https://doi.org/10.1109/TVT.2021.3107734
- [11] Li, H., Zhang, X., Xu, C., & Hong, J. (2020). Sensorless Control of IPMSM Using Moving-Average-Filter Based PLL on HF Pulsating Signal Injection Method. IEEE Transactions on Energy Conversion, 35(1), 43-52. https://doi.org/10.1109/TEC.2019.2946888
- [12] Zhao, W., Yang, A., Ji, J., Chen, Q., & Zhu, J. (2019). Modified Flux Linkage Observer for Sensorless Direct Thrust Force Control of Linear Vernier Permanent Magnet Motor. IEEE Transactions on Power Electronics, 34(8), 7800-7811. https://doi.org/10.1109/TPEL.2018.2879411
- [13] Li, Y., Huang, Y., & Xu, X. (2019). A novel hybrid control approach for modular automation system: a case study of sensorless interior permanent magnet in-wheel motor. Assembly Automation, 39(5), 840-853. https://doi.org/10.1108/AA-08-2018-0120
- [14] Bašić, M., Vukadinović, D., Grgić, I., & Bubalo, M. (2020). Speed-Sensorless Vector Control of an Induction Generator Including Stray Load and Iron Losses and Online Parameter Tuning. IEEE Transactions on Energy Conversion, 35(2), 724-732. https://doi.org/10.1109/TEC.2019.2952666
- [15] Yuan, C.C., Zhang, H.F., He, Y.G., Shen, J., & Chen, L. (2022). Identification of adhesion coefficient ahead based on image feature and HMM. Journal of Jiangsu University (Natural Science Edition), 43(04), 373-380.
- [16] Fang, J., & Han, B. (2018). High-Precision Parameter Identification of High-Speed Magnetic Suspension Motor. IEEE Transactions on Energy Conversion, 33(1), 20-31. https://doi.org/10.1109/TEC.2016.2620802
- [17] Yang, C., Bu, L., & Chen, B. (2021). Energy modeling and online parameter identification for permanent magnet synchronous motor driven belt conveyors. Measurement, 178, 109342. https://doi.org/10.1016/j.measurement.2021.109342
- [18] Rafaq, M. S., Mwasilu, F., Kim, J., Choi, H. H., & Jung, J. W. (2017). Online Parameter Identification for Model-Based Sensorless Control of Interior Permanent Magnet Synchronous Machine. IEEE Transactions on Power Electronics, 32(6), 4631-4643. https://doi.org/10.1109/TPEL.2016.2598731
- [19] Yao, Y., Huang, Y., Peng, F., & Dong, J. (2020). Position Sensorless Drive and Online Parameter Estimation for Surface-Mounted PMSMs Based on Adaptive Full-State Feedback Control. IEEE Transactions on Power Electronics, 35(7), 7341-7355. https://doi.org/10.1109/TPEL.2019.2957058
- [20] Wang, Y., Xu, Y., & Zou, J. (2020). Online Multiparameter Identification Method for Sensorless Control of SPMSM. IEEE Transactions on Power Electronics, 35(10), 10601-10613. https://doi.org/10.1109/TPEL.2020.2974870
- [21] Wang, Q., Wang, G., Zhao, N., Zhang, G., Cui, Q., & Xu, D. (2021). An Impedance Model-Based Multiparameter Identification Method of PMSM for Both Offline and Online Conditions. IEEE Transactions on Power Electronics, 36(1), 727-738. https://doi.org/10.1109/TPEL.2020.3000896
- [22] Liu, Z. H., Wei, H. L., Zhong, Q. C., Liu, K., Xiao, X. S., & Wu, L. H. (2017). Parameter Estimation for VSI-Fed PMSM Based on a Dynamic PSO with Learning Strategies. IEEE Transactions on Power Electronics, 32(4), 3154-3165. https://doi.org/10.1109/TPEL.2016.2572186
- [23] Liu, K., & Zhu, Z. Q. (2015). Quantum Genetic Algorithm-Based Parameter Estimation of PMSM under Variable Speed Control Accounting for System Identifiability and VSI Nonlinearity. IEEE Transactions on Industrial Electronics, 62(4), 2363-2371. https://doi.org/10.1109/TIE.2014.2351774
- [24] Pan, Y., Sun, T., & Yu, H. (2019). On parameter convergence in least squares identification and adaptive control. International Journal of Robust and Nonlinear Control, 29(10), 2898-2911. https://doi.org/10.1002/rnc.4527
- [25] Zerdali, E. (2020). A Comparative Study on Adaptive EKF Observers for State and Parameter Estimation of Induction Motor. IEEE Transactions on Energy Conversion, 35(3), 1443-1452. https://doi.org/10.1109/TEC.2020.2979850
- [26] Zhang, L. W., Zhang, P., Liu, Y. F., Zhang, C., & Liu, J. (2018). Parameter identification of permanent magnet synchronous motor based on variable step-size Adaline neural network. Transactions of China Electrotechnical Society, 33(S2), 377-384. https://doi.org/10.19595/j.cnki.1000-6753.tces.L80266 (in Chinese)
- [27] Xiao, X., Xu, Q., Wang, Y., & Shi, Y. (2014). Parameter identification of interior permanent magnet synchronous motors based on genetic algorithm. Transactions of China Electrotechnical Society, 29(3), 21-26.
- [28] Cao, Y., Zhang, H., Li, W., Zhou, M., Zhang, Y., & Chaovalitwongse, W. A. (2018). Comprehensive learning particle swarm optimization algorithm with local search for multimodal functions. IEEE Transactions on Evolutionary Computation, 23(4), 718-731. https://doi.org/10.1109/TEVC.2018.2885075
- [29] Guo-han, L., Jing, Z., Zhao-hua, L., & Kui-yin, Z. (2015). Parameter identification of PMSM using improved comprehensive learning particle swarm optimization. Electric Machines and Control, 19(1), 51-57. https://doi.org/10.15938/j.emc.2015.01.008 (in Chinese)
- [30] Zhang, J. C., Wang, T., Wang, L. M., Zou, X. J., & Song, W. (2021). Optimization control strategy of driving torque for slope-crossing of pure electric vehicles. Journal of Jiangsu University (Natural Science Edition), 42(05), 506-512.
- [31] Haghdar, K. (2019). Optimal DC source influence on selective harmonic elimination in multilevel inverters using teaching–learning-based optimization. IEEE Transactions on Industrial Electronics, 67(2), 942-949. https://doi.org/10.1109/TIE.2019.2901657
- [32] Zhou, Y., Huang, K., Sun, P., & Dong, R. (2020). Analytical Calculation of Performance of Line-Start Permanent-Magnet Synchronous Motors Based on Multidamping-Circuit Model. IEEE Transactions on Power Electronics, 36(4), 4410-4419. https://doi.org/10.1109/TPEL.2020.3025172
- [33] Li, Y., Wu, H., Xu, X., Cai, Y., & Sun, X. (2019). Analysis on electromechanical coupling vibration characteristics of in-wheel motor in electric vehicles considering air gap eccentricity. Bulletin of the Polish Academy of Sciences. Technical Sciences, 67(5). https://doi.org/10.24425/bpasts.2019.130882
- [34] Liu, J.Y., Bi, S., Wu, D. H., & Yang, Z.G. (2021). Sensitivity analysis of parameters for controllable transformer rectifier. Journal of Jiangsu University (Natural Science Edition), 42(04), 466-472.
- [35] Accetta, A., Alonge, F., Cirrincione, M., D’Ippolito, F., Pucci, M., & Sferlazza, A. (2020). GA-Based Off-Line Parameter Estimation of the Induction Motor Model Including Magnetic Saturation and Iron Losses. IEEE Open Journal of Industry Applications, 1, 135-147. https://doi.org/10.1109/OJIA.2020.3024567
- [36] Liu, K., Zhang, Q., Chen, J., Zhu, Z. Q., & Zhang, J. (2010). Online multiparameter estimation of nonsalient-pole PM synchronous machines with temperature variation tracking. IEEE Transactions on Industrial Electronics, 58(5), 1776-1788. https://doi.org/10.1109/TIE.2010.2054055
Uwagi
1. This work was supported by the National Natural Science Foundation of China (Grant No. 51705213), the China Postdoctoral Science Foundation (Grant No. 2019M660105 and Grant No. 2020T130360) and the Jiangsu Province Postdoctoral Science Foundation (Grant No. 2021K443C).
2. Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-2c7ed45b-d76f-45e9-88c7-d76ef549f1a1