Identyfikatory
DOI
Warianty tytułu
Języki publikacji
Abstrakty
Properties of selected Precambrian and Paleozoic sedimentary clastic rocks were analysed with respect to their reservoir potential. Multidimensional analysis of laboratory results and borehole logging data was used to construct digital models of pre-Mesozoic, deeply buried formations, present as tight, low-porosity and low-permeability rocks. This modern statistical and deterministic approach as applied to laboratory and borehole logging results worked to integrate data at different scales. The results obtained are useful not only in further scientific research but also found a use in industrial application. As a first step, statistical methods, including clustering and separation of homogeneous groups, enabled digital rock model creation on the basis of the results of such laboratory measurements as pycnometry, mercury porosimetry, nuclear magnetic resonance spectroscopy or computed X-ray tomography. Next, the models constructed were applied in borehole logging interpretation to find intervals with similar petrophysical properties within the group and different properties between the groups. This approach allowed implementation of upscaling procedures of laboratory experiments at micro- and nano-scale to borehole logging scale. High correlations were established between the log petrophysical parameters within the digital models. This approach can be used to divide the succession cored into intervals with different petrophysical parameters.
Czasopismo
Rocznik
Tom
Strony
896--907
Opis fizyczny
Bibliogr. 36 poz., rys., tab., wykr.
Twórcy
autor
- AGH University of Science and Technology, Faculty of Geology, Geophysics and Environmental Protection, Department of Geophysics, al. A. Mickiewicza 30, 30-059 Kraków, Poland
Bibliografia
- 1. Andrä, H., Combaret, N., Dvorkin, J., Glatt, E., Han, J., Krzikalla, F., Lee, M., Madonna, C., Marsh, M., Mukerji, T., Ricker, S., Saenger, E.H., Sain, R., Saxena, N., Wiegmann, A., Zhan, X., 2013. Digital rock physics benchmarks - Part II: Computing effective properties. Computers & Geosciences, 50: 33-43.
- 2. Bakun-Czubarow, N., 1984. Petrology and elements of geochemistry. Constitution of the Earth's Interior. In: Physics and Evolution of the Earth's Interior (eds. J. Leliwa-Kopystyński and R. Teisseyre): 326-358. Elsevier, Amsterdam-Oxford-New York, Polish Scientific Publishers, Warszawa.
- 3. Bielecki, J., Bożek, S., Lekki, J., Stachura, Z., Kwiatek, W.M., 2009. Applications of the Cracow X-ray microprobe in tomography. Acta Physica Polonica A, 115: 537-541.
- 4. Botor, D., Papiernik, B., Maćkowski, T., Teicher, B., Kosakowski, P., Machowski, G., Górecki, W., 2013. Gas generation in Carboniferous source rocks of the Variscan foreland basin: implications for a charge history of Rotliegend deposits with natural gases. Annales Societatis Geologorum Poloniae, 83: 353-383.
- 5. Brace, W.F., 1966. Dilatancy in the fracture of crystalline rock. Journal of Geophysical Research, 71: 3939-3953.
- 6. Coates, G.R., Xiao, L., Prammer, M.G., 1999. NMR Logging Principles & Applications. Halliburton Energy Services, Houston.
- 7. Dohnalik, M., 2013. Improving the ability of determining reservoir rocks parameters using X-ray computed microtomography. Unpublished Ph.D. thesis, AGH University of Science and Technology, Kraków.
- 8. Dudek, L., Stadtmuller, M., 2010. Application of 3D modeling using PetroCharge simulation to determine quantitative resources of crude oil and natural gas by utilisation of geophysical well logging profiles (in Polish with English summary). Nafta-Gaz, 66: 973-986.
- 9. Dvorkin, J., Armbruster, M., Baldwin, Ch., Fang, Q., Derzhi, N., Gomez, C., Nur, B., Nur, A., Mu, Y., 2008. The future of rock physics: computational methods vs. lab testing. First Break, 26: 63-68.
- 10. Hartigan, J.A., Wong, M.A., 1978. Algorithm 136. A k-means clustering algorithm. Applied Statistics, 28: 100.
- 11. Jarzyna, J., Bała, M., Krakowska, P., 2013. Multi-method approach to velocity determination from acoustic well logging. Annales Societatis Geologorum Poloniae, 83: 133-147.
- 12. Jarzyna, J., Krakowska, P., Puskarczyk, E., Semyrka, R., 2015. Rock reservoir properties from the comprehensive interpretation of nuclear magnetic resonance and mercury injection porosimetry laboratory results. Applied Magnetic Resonance, 46: 95-115.
- 13. Kiersnowski, H., Buniak, A., Kuberska, M., Srokowska-Okońska, A., 2010. Tight gas accumulations in Rotliegend sandstones of Poland (in Polish with English summary). Przegląd Geologiczny, 58: 335-346.
- 14. Klinkenberg, L.J., 1941. The permeability of porous media to liquids and gases. Drilling and Production Practice, American Petroleum Institute: 200-213.
- 15. Kotarba, M.J., 2010. Geology, ecology and petroleum of the lower Paleozoic strata in the Polish part of the Baltic region. Geological Quarterly, 54 (2): 103-108.
- 16. Krakowska, P., Puskarczyk, E., 2015. Tight reservoirs properties by Nuclear Magnetic Resonance, Mercury Porosimetry and Computed Microtomography laboratory techniques. Case study of Palaeozoic clastic rocks. Acta Geophysica, 63: 789-814.
- 17. Krakowska, P., Jarzyna, J., Wawrzyniak-Guz, K., Puskarczyk, E., Zych, M., 2016. Heterogeneity analysis of the Polish shale gas formations based on results of laboratory measurements. Proceedings of 16 International Multidisciplinary Scientific Geoconference SGEM 2016, 30 June-6 July, Albena, Bulgaria, 3: 817-823.
- 18. Madonna, C., Almqvist, B.S.G., Saenger, E.H., 2012. Digital rock physics: numerical prediction of pressure-dependent ultrasonic velocities using micro-CT imaging. Geophysical Journal International, 189: 1475-1482.
- 19. Marcinowski, R., 2004a. Słownik jednostek litostratygraficznych Polski (in Polish). Wersja podstawowa (grudzień 2004). Tom I: jednostki formalne prekambru i paleozoiku. Państwowy Instytut Geologiczny - PIB, Warszawa.
- 20. Marcinowski, R., 2004b. Słownik jednostek litostratygraficznych Polski (in Polish). Wersja podstawowa (grudzień 2004). Tom II: jednostki nieformalne prekambru i paleozoiku. Państwowy Instytut Geologiczny, Warszawa.
- 21. Modliński, Z., Szymański, B., Teller, L., 2006. The Silurian lithostratigraphy of the Polish part of the Peri-Baltic Depression (N Poland) (in Polish with English summary). Przegląd Geologiczny, 54: 787-796.
- 22. Pittman, E., 1992. Relationship of porosity and permeability to various parameters derived from mercury injection - capillary pressure curves for sandstones. AAPG Bulletin, 76: 191-198.
- 23. Poprawa, P., 2010. Shale gas potential of the Lower Palaeozoic complex in the Baltic and Lublin-Podlasie basins (Poland) (in Polish with English summary). Przegląd Geologiczny, 58: 226-249.
- 24. Poprawa, P., Kiersnowski, H., 2008. Potential for shale gas and tight gas exploration in Poland (in Polish with English summary). Biuletyn Państwowego Instytutu Geologicznego, 429: 145-152.
- 25. Porębki, S.J., Prugar, W., Zacharski, J., 2013. Silurian shales of the East European Platform in Poland - some exploration problems. Przegląd Geologiczny, 61 : 630-638.
- 26. Puskarczyk, E., Jarzyna, J., Porębski, S., 2015. Application of multivariate statistical methods for characterizing heterolithic reservoirs based on wireline log - example from the Carpathian Foredeep Basin (Middle Miocene, SE Poland). Geological Quarterly, 59 (1): 157-168.
- 27. Semyrka, R., Jarzyna, J., Semyrka, G., Kaźmierczuk, M., Pikulski, L., 2010. Reservoir parameters of lithostratigraphic successions of the lower Paleozoic strata in the Polish part of the Baltic region based on laboratory studies and well logs. Geological Quarterly, 54 (2): 227-240.
- 28. Stock, S.R., 2009. MicroComputed Tomography. Methodology and Application. CRS Press, Taylor and Francis Group, Boca Raton.
- 29. Straley, Ch., Rossini, D., Vinegar, H., Tutunjian, P., Morris, Ch., 1997. Core analysis by low field NMR. The Log Analyst, 38: 84-94.
- 30. Such, P., Leśniak, G., Słota, M., 2010. Quantitative porosity and permeability characterization of potential Rotliegend tight gas reservoirs (in Polish with English summary). Przegląd Geologiczny, 58: 345-351.
- 31. Swanson, B.F., 1981. A simple correlation between permeabilities and mercury capillary pressures. Journal of Petroleum Technology, 8234: 2488-2504.
- 32. StatSoft Inc., 2011. STATISTICA (data analysis software system), version 10, www.statsoft.com
- 33. Szabó, N.P., 2011. Shale volume estimation based on the factor analysis of well logging data. Acta Geophysica, 59: 935-953.
- 34. Tryon, R.C., 1939. Cluster Analysis. McGraw-Hill, NewYork.
- 35. Wójcicki, A., Kiersnowski, H., Dyrka, I., Adamczak-Biały, T., Becker, A., Głuszyński, A., Janas, M., Kozłowska, A., Krzemiński, I., Kuberska, M., Pacześna, J., Podhalańska, T., Roman, M., Skowroński, L., Waksmudzka, M.I., 2014. Prognostyczne zasoby gazu ziemnego w wybranych zwięzłych skałach zbiornikowych Polski (in Polish). Państwowy Instytut Geologiczny, Warszawa.
- 36. Żelaźniewicz, A., Aleksandrowski, P., Buła, Z., Karnkowski, P.H., Konon, A., Oszczypko, N., Ślączka A., Żaba J., Żytko K., 2011. Regionalizacja Tektoniczna Polski (in Polish). Committee of Geological Sciences of the Polish Academy of Sciences, KiD Publisher, Wrocław, Poland.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-2c7e57e9-0206-4570-b21a-29e82c539198