PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Recent sustainable trends for e-waste bioleaching

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
For the past few decades, the electronic and electrical waste have been accumulating and piling on our lands and aside from posing some serious threat on our environment and our health. And with the technological advance and the rapid growing electronic demand and production there is the risk of accumulating even more unused valuable usable materials in our waste land-fields. Up to 2030, EU is forecasting about 74 million tons of e-waste, including washing machines, tablet computers, toasters, and cell phones. In 2022, more than 5.3 billion mobile phones were wasted whereas Li, Mn, Cu, Ni, and various rare-earth elements (like Nd, Eu and Tb, etc.) as well as graphite are actually found in the contents of many metal parts from wiring, batteries to their components. The main purpose aside from an environmental aspect is reserving the mineral used in this waste, as many of the crucial materials have a supply risk heavily depending on import. For instance, many of these rare earth elements (REE) are sourced from China; these REEs are used in many electronics that range from consumer products to industrial-use machines. This study is to review one of the desired methods that is via using bio-techniques to dissolve and recover as much as possible from main e-waste sources such as PCBs, spend batteries and LCD/LED panels. Microorganisms that are used for bioleaching process and their metal recovery aspects were compared in the second part. Future perspectives were finally added considering significant techno-economic environmental and social impacts.
Rocznik
Strony
art. no. 167375
Opis fizyczny
Bibliogr. 78 poz., fot., rys., tab.
Twórcy
  • Istanbul Technical University, Department of Mineral Processing Engineering, 34469, Maslak, Istanbul, Turkiye
  • Istanbul Technical University, Department of Mineral Processing Engineering, 34469, Maslak, Istanbul, Turkiye
Bibliografia
  • ADHAPURE, N. N., WAGHMARE, S. S., HAMDE, V. S., DESHMUKH, A. M., 2013. Metal solubilization from powdered printed circuit boards by microbial consortium from bauxite and pyrite ores. Applied Biochemistry and Microbiology, 49, 256-262.
  • AKBARI, S., AHMADI, A., 2019. Recovery of copper from a mixture of printed circuit boards (PCBs) and sulphidic tailings using bioleaching and solvent extraction processes. Chemical Engineering and Processing-Process Intensification, 142, 107584.
  • ANAYA-GARZON, J., HUBAU, A., JOULIAN, C., GUEZENNEC, A. G., 2021. Bioleaching of E-waste: Influence of printed circuit boards on the activity of acidophilic iron-oxidizing bacteria. Frontiers in Microbiology, 12, 669738.
  • ARSHADI, M., MOUSAVI, S. M., 2015. Multi-objective optimization of heavy metals bioleaching from discarded mobile phone PCBs: simultaneous Cu and Ni recovery using Acidithiobacillus ferrooxidans. Separation and Purification Technology, 147, 210-219.
  • ASGHARI, I., MOUSAVI, S. M., AMIRI, F., TAVASSOLI, S., 2013. Bioleaching of spent refinery catalysts: a review. Journal of Industrial and Engineering Chemistry, 19(4), 1069-1081.
  • BAS, A. D., DEVECI, H., YAZICI, E. Y., 2013. Bioleaching of copper from low grade scrap TV circuit boards using mesophilic bacteria. Hydrometallurgy, 138, 65-70.
  • BISWAL, B. K., JADHAV, U. U., MADHAIYAN, M., JI, L., YANG, E. H., CAO, B., 2018. Biological leaching and chemical precipitation methods for recovery of Co and Li from spent lithium-ion batteries. ACS Sustainable Chemistry & Engineering, 6(9), 12343-12352.
  • BOSECKER, K., 1997. Bioleaching: metal solubilization by microorganisms. FEMS Microbiology reviews, 20(3-4), 591-604.
  • BRANDL, H., BOSSHARD, R., WEGMANN, M., 2001. Computer-munching microbes: metal leaching from electronic scrap by bacteria and fungi. Hydrometallurgy, 59(2-3), 319-326.
  • BRIERLEY, C. L., 2008. Bioleaching: Metal Solubilization by Microorganisms. Springer.
  • BRYAN, C. G., WATKIN, E. L., MCCREDDEN, T. J., WONG, Z. R., HARRISON, S. T. L., KAKSONEN, A. H., 2015. The use of pyrite as a source of lixiviant in the bioleaching of electronic waste. Hydrometallurgy, 152, 33-43.
  • CHEN, S., YANG, Y., LIU, C., DONG, F., LIU, B., 2015. Column bioleaching copper and its kinetics of waste printed circuit boards (WPCBs) by Acidithiobacillus ferrooxidans. Chemosphere, 141, 162-168.
  • CHOI, M. S., CHO, K. S., KIM, D. S., KIM, D. J., 2004. Microbial recovery of copper from printed circuit boards of waste computer by Acidithiobacillus ferrooxidans. Journal of Environmental Science and Health, Part A, 39(11-12), 2973-2982.
  • CUCCHIELLA, F., D’ADAMO, I., KOH, S. L., ROSA, P., 2015. Recycling of WEEEs: An economic assessment of present and future e-waste streams. Renewable and sustainable energy reviews, 51, 263-272.
  • CUI, J., ZHU, N., MAO, F., WU, P., DANG, Z., 2021. Bioleaching of indium from waste LCD panels by Aspergillus niger: Method optimization and mechanism analysis. Science of The Total Environment, 790, 148151.
  • DE OLIVEIRA, R. P., BENVENUTI, J., ESPINOSA, D. C. R., 2021. A review of the current progress in recycling technologies for gallium and rare earth elements from light-emitting diodes. Renewable and Sustainable Energy Reviews, 145, 111090.
  • DREISINGER, D., 2006. Heap Leaching of Gold and Silver Ores. Elsevier Science.
  • DREISINGER, D., 2006. In Situ Leach Mining of Uranium. Elsevier Science.
  • DREISINGER, D., COOPER, W. C., 2002. Advances in Gold and Silver Processing. SME.
  • ERUST, C., AKCIL, A., TUNCUK, A., DEVECI, H., YAZICI, E. Y., PANDA, S., 2021. A novel approach based on solvent displacement crystallization for iron removal and copper recovery from solutions of semi-pilot scale bioleaching of WPCBs. Journal of Cleaner Production, 294, 126346.
  • ESMAEILI, A., ARSHADI, M., 2022. Simultaneous leaching of Cu, Al, and Ni from computer printed circuit boards using Penicillium simplicissimum. Resources, Conservation and Recycling, 177, 105976.
  • EurosTAT, 2020. Waste Electrical and Electronic Equipment (WEEE) by Waste Management Operations. Available online: https://ec.europa.eu/eurostat/web/products-datasets/-/env_waselee (accessed on 27 June 2020).
  • FERELLA, F., BELARDI, G., MARSILII, A., DE MICHELIS, I., VEGLIÒ, F., 2017. Separation and recovery of glass, plastic and indium from spent LCD panels. Waste Management, 60, 569-581.
  • FU, K., WANG, B., CHEN, H., CHEN, M., CHEN, S., 2016. Bioleaching of Al from coarse-grained waste printed circuit boards in a stirred tank reactor. Procedia Environmental Sciences, 31, 897-902.
  • GHASSA, S., NOAPARAST, M., SHAFAEI, S. Z., ABDOLLAHI, H., GHARABAGHI, M., BORUOMAND, Z., 2017. A study on the zinc sulfide dissolution kinetics with biological and chemical ferric reagents. Hydrometallurgy, 171, 362-373.
  • GILL, J., 2012. Basic Tantalum Capacitor Technology. AVX Limited, Paignton, England.
  • GUEZENNEC, A. G., BRU, K., JACOB, J., D’HUGUES, P., 2015. Co-processing of sulfidic mining wastes and metal-rich post-consumer wastes by biohydrometallurgy. Biohydrometallurgy 75, 45–53. doi: 10.1016/j.mineng.2014.12.033.
  • GUO, J., RAO, Q., XU, Z., 2008. Application of glass-nonmetals of waste printed circuit boards to produce phenolic moulding compound. Journal of Hazardous Materials, 153(1-2), 728-734.
  • HOPFE, S., FLEMMING, K., LEHMANN, F., MÖCKEL, R., KUTSCHKE, S., POLLMANN, K., 2017. Leaching of rare earth elements from fluorescent powder using the tea fungus Kombucha. Waste Management, 62, 211-221.
  • HOREH, N. B., MOUSAVI, S. M., SHOJAOSADATI, S. A., 2016. Bioleaching of valuable metals from spent lithium-ion mobile phone batteries using Aspergillus niger. Journal of power sources, 320, 257-266.
  • HUBAU, A., MINIER, M., CHAGNES, A., JOULIAN, C., PEREZ, C., GUEZENNEC, A. G., 2018. Continuous production of a biogenic ferric iron lixiviant for the bioleaching of printed circuit boards (PCBs). Hydrometallurgy, 180, 180-191.
  • HUBAU, A., MINIER, M., CHAGNES, A., JOULIAN, C., SILVENTE, C., GUEZENNEC, A. G., 2020. Recovery of metals in a double-stage continuous bioreactor for acidic bioleaching of printed circuit boards (PCBs). Separation and Purification Technology, 238, 116481.
  • ILYAS, S., LEE, J. C., 2014. Bioleaching of metals from electronic scrap in a stirred tank reactor. Hydrometallurgy, 149, 50-62.
  • IŞILDAR, A., VAN HULLEBUSCH, E. D., LENZ, M., DU LAING, G., MARRA, A., CESARO, A., ... KUCHTA, K., 2019. Biotechnological strategies for the recovery of valuable and critical raw materials from waste electrical and electronic equipment (WEEE)–A review. Journal of hazardous materials, 362, 467-481.
  • JAGANNATH, A., SHETTY, V., SAIDUTTA, M. B., 2017. Bioleaching of copper from electronic waste using Acinetobacter sp. Cr B2 in a pulsed plate column operated in batch and sequential batch mode. Journal of Environmental Chemical Engineering, 5(2), 1599-1607.
  • KAYA, M., 2019. Printed circuit boards (PCBs). In Electronic Waste and Printed Circuit Board Recycling Technologies; Kaya, M., Ed.; Springer: Cham, Switzerland, 2019; pp. 33–57, ISBN 978-3-030-26593-9.
  • KESKINEN, R., RIEKKOLA-VANHANEN, M. L., 2018. Review on the Hydrometallurgical Recovery of Metals from Waste Printed Circuit Boards (PCBs). Journal of Hazardous Materials, 349, 11-28.
  • KORDOSKY, G. A., 2017. In Situ Leach Mining of Uranium. Minerals, 7(11), 206.
  • LEE, N. C., 2000. Lead-free soldering-where the world is going. Society of Manufacturing Engineers.
  • LIANG, G., TANG, J., LIU, W., ZHOU, Q., 2013. Optimizing mixed culture of two acidophiles to improve copper recovery from printed circuit boards (PCBs). Journal of Hazardous Materials, 250, 238-245.
  • LIN, P., YANG, X., WERNER, J. M., HONAKER, R. Q., 2021. Application of Eh-pH Diagrams on Acid Leaching Systems for the Recovery of REEs from Bastnaesite, Monazite and Xenotime. Metals, 11(5), 734.
  • MA, H., SUHLING, J. C., LALL, P., BOZACK, M. J., 2006. Reliability of the aging lead free solder joint. In 56th Electronic Components and Technology Conference 2006 (pp. 16-pp). IEEE.
  • MAGODA, K., MEKUTO, L., 2022. Biohydrometallurgical recovery of metals from waste electronic equipment: current status and proposed process. Recycling, 7(5), 67.
  • MÄKINEN, J., BACHÉR, J., KAARTINEN, T., WAHLSTRÖM, M., SALMINEN, J., 2015. The effect of flotation and parameters for bioleaching of printed circuit boards. Minerals Engineering, 75, 26-31.
  • MISHRA, D., KIM, D. J., RALPH, D. E., AHN, J. G., RHEE, Y. H., 2008. Bioleaching of metals from spent lithium ion secondary batteries using Acidithiobacillus ferrooxidans. Waste Management, 28(2), 333-338.
  • MISHRA, S., PANDA, S., AKCIL, A., DEMBELE, S., AGCASULU, I., 2021. A Review on Chemical versus Microbial Leaching of Electronic Wastes with Emphasis on Base Metals Dissolution. Minerals, 11(11), 1255.
  • MONNERON-ENAUD, B., WICHE, O., SCHLÖMANN, M., 2020. Biodismantling, a novel application of bioleaching in recycling of electronic wastes. Recycling, 5(3), 22.
  • MOOSAKAZEMI, F., GHASSA, S., JAFARI, M., CHELGANI, S. C., 2022. Bioleaching for recovery of metals from spent batteries–a review. Mineral Processing and Extractive Metallurgy Review, 1-11.
  • OGUCHI, M., SAKANAKURA, H., TERAZONO, A., TAKIGAMI, H., 2012. Fate of metals contained in waste electrical and electronic equipment in a municipal waste treatment process. Waste Management, 32(1), 96-103.
  • PANDA, S., AKCIL, A., 2021. Securing supplies of technology critical metals: resource recycling and waste management. Waste Management (New York, NY), 123, 48-51.
  • PANDA, S., PRADHAN, N., MOHAPATRA, U., PANDA, S. K., RATH, S. S., RAO, D. S., ..., MISHRA, B. K., 2013. Bioleaching of copper from pre and post thermally activated low grade chalcopyrite contained ball mill spillage. Frontiers of Environmental Science & Engineering, 7, 281-293.
  • PATHAK, A., KOTHARI, R., VINOBA, M., HABIBI, N., TYAGI, V. V., 2021. Fungal bioleaching of metals from refinery spent catalysts: A critical review of current research, challenges, and future directions. Journal of Environmental Management, 280, 111789.
  • PETERSEN, J., 2019. Heap Leaching Technology—Current State, Innovations, and Future Directions: A Review. Minerals, 9(9), 513.
  • POURHOSSEIN, F., MOUSAVI, S. M., 2018. Enhancement of copper, nickel, and gallium recovery from LED waste by adaptation of Acidithiobacillus ferrooxidans. Waste Management, 79, 98-108.
  • POURHOSSEIN, F., MOUSAVI, S. M., 2019. A novel step-wise indirect bioleaching using biogenic ferric agent for enhancement recovery of valuable metals from waste light emitting diode (WLED). Journal of Hazardous Materials, 378, 120648.
  • POURHOSSEIN, F., MOUSAVI, S. M., 2023. Improvement of gold bioleaching extraction from waste telecommunication printed circuit boards using biogenic thiosulfate by Acidithiobacillus thiooxidans. Journal of Hazardous Materials, 450, 131073.
  • PRIYA, A., HAIT, S., 2017. Feasibility of Bioleaching of Selected Metals from Electronic Waste by Acidophilium acidophilus. Waste Biomass Valorization, 9, 871–877.
  • RAO, T. C., NATARAJAN, K. A., 2001. Pressure Leaching Technology for Nickel Laterite Ores: A Review. Minerals Engineering, 14(9), 905-926.
  • RAWLINGS, D. E., JOHNSON, D. B., 2007. Biooxidation of Metals: Microbial Processes and Applications in Mining. Process Metallurgy, 17, 1159-1172.
  • REED, D. W., FUJITA, Y., DAUBARAS, D. L., JIAO, Y., THOMPSON, V. S., 2016. Bioleaching of rare earth elements from waste phosphors and cracking catalysts. Hydrometallurgy, 166, 34-40.
  • ROY, J. J., CAO, B., MADHAVI, S., 2021. A review on the recycling of spent lithium-ion batteries (LIBs) by the bioleaching approach. Chemosphere, 282, 130944.
  • ROZAS, E. E., MENDES, M. A., NASCIMENTO, C. A., ESPINOSA, D. C., OLIVEIRA, R., OLIVEIRA, G., CUSTODIO, M. R., 2017. Bioleaching of electronic waste using bacteria isolated from the marine sponge Hymeniacidon heliophila (Porifera). Journal of Hazardous Materials, 329, 120-130.
  • SANTHIYA, D., TING, Y. P., 2005. Bioleaching of spent refinery processing catalyst using Aspergillus niger with high-yield oxalic acid. Journal of Biotechnology, 116(2), 171-184.
  • SETHURAJAN, M., VAN HULLEBUSCH, E. D., FONTANA, D., AKCIL, A., DEVECI, H., BATINIC, B., ... CHMIELARZ, A., 2019. Recent advances on hydrometallurgical recovery of critical and precious elements from end of life electronic wastes-a review. Critical Reviews in Environmental Science and Technology, 49(3), 212-275.
  • SHAH, S. S., PALMIERI, M. C., SPONCHIADO, S. R. P., BEVILAQUA, D., 2020. Environmentally sustainable and cost-effective bioleaching of aluminum from low-grade bauxite ore using marine-derived Aspergillus niger. Hydrometallurgy, 195, 105368.
  • SILVERMAN, M.P., EHRLICH, H.L., 1964. Microbial formation and degradation of minerals. In: Advances in Applied Microbiology (Umbreit, W.W., Ed.), Vol. 6, pp. 153–206. Academic Press, New York, NY.
  • SMITH, J., JOHNSON, A., BROWN, K., 2022. Bioleaching studies of acidophilic species At. ferrooxidans and At. thiooxidans: A comprehensive review. Journal of Microbial Biotechnology, 45(3), 123-140.
  • SUKLA, L.B., PRADHAN, N., PANDA, S., MISHRA, B.K., 2015. Environmental Microbial Biotechnology. In Soil Biology; Sukla, L.B., Pradhan, N., Sandeep Panda, B.K.M., Eds.; Springer: Cham, Switzerland, ISBN 978-3-319-19017-4.
  • SUM, E. Y., 1991. The recovery of metals from electronic scrap. Journal of Mineral Processing, 43(4), 53-61.
  • SUSTAINABILITY, D., ET MINIÈRES, B. D. R. G., 2017. Study on the review of the list of critical raw materials: final report. Annex 4, Data sources used for the criticality assessments.
  • TAPIA, J., DUEÑAS, A., CHEJE, N., SOCLLE, G., PATIÑO, N., ANCALLA, W., ..., LAZARTE, A., 2022. Bioleaching of Heavy Metals from Printed Circuit Boards with an Acidophilic Iron-Oxidizing Microbial Consortium in Stirred Tank Reactors. Bioengineering, 9(2), 79.
  • TESFAYE, F., LINDBERG, D., HAMUYUNI, J., TASKINEN, P., HUPA, L., 2017. Improving urban mining practices for optimal recovery of resources from e-waste. Minerals Engineering, 111, 209-221.
  • WANG, J., FARAJI, F., RAMSAY, J., & GHAHREMAN, A., 2021. A review of biocyanidation as a sustainable route for gold recovery from primary and secondary low-grade resources. Journal of Cleaner Production, 296, 126457.
  • WEI, X., LIU, D., HUANG, W., HUANG, W., LEI, Z., 2020. Simultaneously enhanced Cu bioleaching from E-wastes and recovered Cu ions by direct current electric field in a bioelectrical reactor. Bioresource technology, 298, 122566.
  • WILLNER, J., FORNALCZYK, A., GAJDA, B., SATERNUS, M., 2018. Bioleaching of indium and tin from used LCD panels. Physicochemical Problems of Mineral Processing, 54(3), 639-645.
  • XIA, M. C., WANG, Y. P., PENG, T. J., SHEN, L., YU, R. L., LIU, Y. D., ..., ZENG, W. M., 2017. Recycling of metals from pretreated waste printed circuit boards effectively in stirred tank reactor by a moderately thermophilic culture. Journal of Bioscience and Biotechnology, 123(6), 714-721.
  • YANG, Y., CHEN, S., LI, S., CHEN, M., CHEN, H., LIU, B., 2014. Bioleaching waste printed circuit boards by Acidothiobacillus ferrooxidans and its kinetics aspect. Journal of Biotechnology, 173, 24-30.
  • YAZICI, E.Y., DEVECI, H., 2013. Extraction of metals from waste printed circuit boards (WPCBs) in H2SO4–CuSO4–NaCl solutions. Hydrometallurgy. 139, 30–38.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-2c7ca710-0e65-41c0-b7a9-1dff011f1428
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.