PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Enzymatic synthesis of hydrophobic compounds integrated with membrane separation

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The enzymatic synthesis of a highly hydrophobic product (dipeptide precursor) in which the reaction is accompanied by the mass transfer of the reaction product to the organic phase and the substrates to the water phase is considered. Equations describing both continuous and batch processes are formulated. The range of variability in the operating parameters of such a bioreactor is specified, and the correlations reported in the literature to describe mass transfer in the membrane contactor are validated. The proposed process was verified experimentally, and good agreement between the determined and calculated concentrations was obtained in both phases.
Rocznik
Strony
15--27
Opis fizyczny
Bibliogr. 31 poz., rys., tab.
Twórcy
autor
  • Wroclaw University of Technology, Department of Chemistry, Division of Bioprocess and Biomedical Engineering, Wybrzeze Wyspianskiego 27, 50-370 Wroclaw, Poland
  • Wroclaw University of Technology, Department of Chemistry, Division of Bioprocess and Biomedical Engineering, Wybrzeze Wyspianskiego 27, 50-370 Wroclaw, Poland
Bibliografia
  • 1. Agrahari G.K., Verma N., Bhattacharya P.K., 2011. Application of hollow fiber membrane contactor for the removal of carbon dioxide from water under liquid–liquid extraction mode. J. Membrane Sci., 375, 323-333. DOI: 10.1016/j.memsci.2011.03.060.
  • 2. Anzai J., Lee S., Osa T., 1989. Enzyme sensors based on an ion-sensitive field effect transistor coated with Langmuir-Blodgett membranes. Chem. Pharm. Bull., 37, 3320-3322.
  • 3. Bretsznajder S., 1962. Własciwości cieczy i gazow. WNT, Warszawa, Poland (in Polish).
  • 4. Cerovsky V., Jakubke H.-D., 1994. Acyl transfer reaction catalyzed by native and modified -chymotrypsin in acetonitrile with low water content. Enzyme Microb. Tech., 16, 596-601. DOI: 10.1016/0141-0229(94)90125-2.
  • 5. Cerovsky V., Martinek K., 1989. Free chymotrypsin-catalysed synthesis of peptide bond in aliphatic alcohols with low water content. Collect. Czech. Chem. C, 54, 266-276.
  • 6. Chang H., Furusaki S., 1991. Membrane bioreactors: Present and prospects. Adv. Biochem. Eng. Biotech., 44, 27-64.
  • 7. Cunha T., Aires-Barros R., 2002. Large-scale extraction of proteins. Mol. Biotechnol., 20, 1, 29-40. DOI: 10.1385/MB:20:1:029.
  • 8. Ceynowa J., 1974. Kataliza w rektorach z membranami enzymatycznymi. Biotechnologia, 1(24) 64-80 (in Polish).
  • 9. Dabkowska K., Pilarek M., Szewczyk K., 2012. Substrate inhibition in lipase - catalased transestrification of mandelic acid with vinyl acetate. Chem. Process Eng., 33, 539-546. DOI: 10.2478/v10176-012-0044-8.
  • 10. Hossain M.M., Dean J., 2008. Extraction of penicillin G from aqueous solutions: Analysis of reaction equilibrium and mass transfer. Separ. Purif. Technol., 62, 437-443. DOI: 10.1016/j.seppur.2008.02. 012.
  • 11. Huang H., Yang S.-T., Ramey D.E., 2004. A hollow-fiber membrane extraction process for recovery and separation of lactic acid from aqueous solution. Appl. Biochem. Biotechnol., 114, 671-688. DOI: 10.1385/ABAB:114:1-3:671.
  • 12. Jakubke H.-D., Kuhl P., Konnecke A., 1985. Basic principles of protease – catalyzed peptide bond formation. Angew. Chem. Int. Edit., 24, 2, 85-93.
  • 13. Jin J.N., Lee S.H., Lee S.B., 2003. Enzymatic production of enantiopure ketoprofen in a solvent-free two-phase system. J. Mol. Catal. B: Enz., 26, 209-216. DOI: 10.1016/j.molcatb.2003.06.004.
  • 14. Koltuniewicz A., Modelski S., Witek A., 2012. Designing of membrane contactors with cross-counter current flow. Chem. Process Eng., 33, 573-583. DOI: 10.2478/v10176-012-0047-5.
  • 15. Ma C.Q., Li J.C., Qiu J.H., Wang M., Xu P., 2006. Recovery of pyruvic acid from biotransformation solutions. Appl. Microbiol. Biotechnol., 70, 308-314. DOI: 10.1007/s00253-005-0072-0.
  • 16. Matsumae H., Furui M., Shibatani T., Tosa T., 1994. Production of optically active 3-phenylglycidic acid ester by the lipase from Serratia marcescent on a hollow-fiber membrane reactor. J. Ferment. Bioeng., 78, 1, 59-63. DOI: 10.1016/0922-338X(94)90179-1.
  • 17. Mizushige T., Kanegawa N., Yamada A., Ota A., 2013. Aromatic amino acid-leucine dipeptides exhibit anxiolytic-like activity in young mice. Neurosci. Lett., 543, 126-129. DOI: 10.1016/j.neulet.2013.03.043.
  • 18. Nomoto F., Hirayama Y., Ikunaka M., Inoue T., Otsuka K., 2003. A practical chemoenzymatic process to access (R)-quinuclidin-3-ol on scale. Tetrahedron: Asymmetry, 14, 1871–1877. DOI: 10.1016/S09574166(03)00363-X.
  • 19. Penci M.C., Constenla D.T., Carelli A.A., 2010, Free-fatty acid profile obtained by enzymatic solvent-free hydrolysis of sunflower and soybean lecithins. Food Chem., 120, 332-338. DOI: 10.1016/j.foodchem.2009.10.025.
  • 20. Payne J.W., Payne G.M., Gupta S., Marshall N.J., Grail B.M., 2001, Conformational limitations of glycylsarcosine as a prototypic substrate for peptide transporters. Biochim. Biophys. Acta, 1514, 65-75.
  • 21. Pohorecki R., Moniuk W. Bielski P., Zdrojkowski A., 2001. Modelling of the coalescence/redispersion processes in bubble columns. Chem. Eng. Sci., 56, 6157-6164. DOI: 10.1016/S0009-2509(01)00214-7.
  • 22. Sentandreu M.A., Toldra F., 2007. Evaluation of ACE inhibitory activity of dipeptides generated by the action of porcine muscle dipeptidyl peptidases. Food Chem., 102, 511-515. DOI: 10.1016/j.foodchem.2006.04.018.
  • 23. Sisak C., Nagy E., Burfeind J., Schugerl K., 2000. Technical aspects of separation and simultaneous enzymatic reaction in multiphase enzyme reactors. Bioprocess Engineering, 23, 503-512. DOI: 10.1007/s004499900187.
  • 24. Trusek-Holownia A., 2003. Synthesis of ZAlaPheOMe, the precursor of bitter dipeptide in the two-phase ethyl acetate-water system catalyzed by thermolysin. J. Biotechnol., 102, 153-163. DOI: 10.1016/S0168-1656(03)00024-5.
  • 25. Trusek-Holownia A., 2005. Improvement of process productivity and product purity by the application of a membrane phase contactor in enzymatic conversion. Separ. Purif. Technol., 41, 267-274. DOI: 10.1016/j.seppur.2004.03.018.
  • 26. Trusek-Holownia A., Noworyta A., 2007. An integrated process: Ester synthesis in an enzymatic membrane reactor and water sorption. J. Biotechnol., 130, 47-56. DOI: 10.1016/j.jbiotec.2007. 03.006.
  • 27. Vercruysse L., Morel N., Camp J.V., Szust J., Smagghe G., 2008. Antihypertensive mechanism of the dipeptide Val-Tyr in rat aorta. Peptides, 29, 261-267. DOI: 10.1016/j.peptides.2007.09.023.
  • 28. Villa E.M.A., Wichmann R., 2005. Membranes in the enzymatic synthesis of biotensides from renewable sources. Catal. Today, 104, 318-322. DOI: 10.1016/j.cattod.2005.03.080.
  • 29. Vu T.H.T., Au H.T., Nguyen T.H.T., Nguyen T.T.T., Do M.H., Bui N.I., Essayem N., 2013. Esterification of lactic acid by catalytic extractive reaction: an efficient way to produce a biosolvent composition. Catal. Lett., 143, 950-956. DOI: 10.1007/s10562-013-1077-4.
  • 30. Wasewar K.L., Heesinkb A.B.M., Versteegb G.F., Pangarkara V.G., 2004. Intensification of conversion of glucose to lactic acid: equilibria and kinetics for back extraction of lactic acid using trimethylamine. Chem. Eng.Sci., 59, 2315-2320. DOI: 10.1016/j.ces.2003.11.023.
  • 31. Yankov D., Molinier J., Albet J., Malmary G., Kyuchoukov G., 2004. Lactic acid extraction from aqueous solutions with tri-n-octylamine dissolved in decanol and dodecane. Biochem. Eng. J., 21, 63–71. DOI:10.1016/j.bej.2004.03.006.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-2c7917cb-a7e3-426d-b406-4457b47032ef
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.