Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

In silico testing of optimized Fuzzy P+D controller for artificial pancreas

Warianty tytułu
Języki publikacji
Background and objectives: Despite therapeutic advances, a complete cure has not been found yet for patients with type 1 diabetes (T1D). Artificial pancreas (AP) is a promising approach to cope with this disease. The controller part of the AP can compute the insulin infusion rate that keeps blood glucose concentration (BGC) in normoglycemic ranges. Most controllers rely on model-based controllers and use manual meal announcements or meal detection algorithms. For a fully automated AP, a controller only using the patient's BGC data is needed. Methods: An optimized Mamdani-type hybrid Fuzzy P+D controller was proposed. Using the University of Virginia/Padova Simulator, a 36 h scenario was tested in nine virtual adult patients. To take into account the effect of continuous glucose monitor noise, the scenario was repeated 25 times for each adult.The main outcomes were the percentage of time BGC levels in the euglycemic range, low blood glucose index (LBGI), and blood glucose risk index (BGRI), respectively. Results: The obtained BGC values were found to be in the euglycemic range for 82.6% of the time. Moreover, the BGC values were below 50 mg/dl, below 70 mg/dl and above 250 mg/dl for 0%, 0.35% and 0.74% of the time, respectively. The BGRI, LBGI, and high blood glucose index (HBGI) were also found as 3.75, 0.34 and 3.41, respectively. The proposed controller both increases the time the BGC levels in the euglycemic range and causes less hypoglycemia and hyperglycemia relative to the published techniques studied in a similar scenario and population.
  • Aksaray Universitesi, Muhendislik Fakultesi, Elektrik-Elektronik Muhendisligi Bolumu, Aksaray 68100, Turkey; Erciyes University, Clinical Engineering Research and Application Center, Kayseri, Turkey,
  • Erciyes University, Clinical Engineering Research and Application Center, Kayseri, Turkey; Erciyes University, Faculty of Engineering, Department of Electrical and Electronics Engineering, Kayseri, Turkey,
  • [1] da Rocha Fernandes J, Ogurtsova K, Linnenkamp U, Guariguata L, Seuring T, Zhang P, et al. IDF Diabetes Atlas estimates of 2014 global health expenditures on diabetes. Diabetes Res Clin Pract 2016;117:48–54.
  • [2] Gondhalekar R, Dassau E, Doyle FJ. MPC design for rapid pump-attenuation and expedited hyperglycemia response to treat T1DM with an artificial pancreas. American Control Conference (ACC). IEEE; 2014. p. 4224–30.
  • [3] Turksoy K, Quinn L, Littlejohn E, Cinar A. Multivariable adaptive identification and control for artificial pancreas systems. IEEE Trans Biomed Eng 2014;61:883–91.
  • [4] Ruiz JL, Sherr JL, Cengiz E, Carria L, Roy A, Voskanyan G, et al. Effect of insulin feedback on closed-loop glucose control: a crossover study. J Diabetes Sci Technol 2012;6:1123–30.
  • [5] Marchetti G, Barolo M, Jovanovic L, Zisser H, Seborg DE. An improved PID switching control strategy for type 1 diabetes. IEEE Trans Biomed Eng 2008;55:857–65.
  • [6] Abbes IB, Richard P-Y, Lefebvre M-A, Guilhem I, Poirier J-Y. A closed-loop artificial pancreas using a proportional integral derivative with double phase lead controller based on a new nonlinear model of glucose metabolism. J Diabetes Sci Technol 2013;7:699–707.
  • [7] Breton M, Farret A, Bruttomesso D, Anderson S, Magni L, Patek S, et al. Fully integrated artificial pancreas in type 1 diabetes. Diabetes 2012;61:2230–7.
  • [8] Cameron F, Bequette BW, Wilson DM, Buckingham BA, Lee H, Niemeyer G. A closed-loop artificial pancreas based on risk management. J Diabetes Sci Technol 2011;5:368–79.
  • [9] Clarke WL, Anderson S, Breton M, Patek S, Kashmer L, Kovatchev B. Closed-loop artificial pancreas using subcutaneous glucose sensing and insulin delivery and a model predictive control algorithm: the Virginia experience. J Diabetes Sci Technol 2009;3:1031–8.
  • [10] Abu-Rmileh A, Garcia-Gabin W. A gain-scheduling model predictive controller for blood glucose control in type 1 diabetes. IEEE Trans Biomed Eng 2010;57:2478–84.
  • [11] Magni L, Raimondo DM, Dalla Man C, De Nicolao G, Kovatchev B, Cobelli C. Model predictive control of glucose concentration in subjects with type 1 diabetes: an in silico trial. IFAC Proc Vol 2008;41:4246–51.
  • [12] Russell SJ, El-Khatib FH, Nathan DM, Magyar KL, Jiang J, Damiano ER. Blood glucose control in type 1 diabetes with a bihormonal bionic endocrine pancreas. Diabetes Care 2012;35:2148–55.
  • [13] Colmegna P, Peña RSS, Gondhalekar R, Dassau E, Doyle III FJ. Reducing risks in type 1 diabetes using H1 control. IEEE Trans Biomed Eng 2014;61:2939–47.
  • [14] Colmegna P, Peña RS. Analysis of three T1DM simulation models for evaluating robust closed-loop controllers. Comput Methods Programs Biomed 2014;113:371–82.
  • [15] Mauseth R, Hirsch IB, Bollyky J, Kircher R, Matheson D, Sanda S, et al. Use of a ‘‘fuzzy logic’’ controller in a closed-loop artificial pancreas. Diabetes Technol Ther 2013;15:628–33.
  • [16] Yadav J, Rani A, Singh V. Performance analysis of fuzzy-PID controller for blood glucose regulation in type-1 diabetic patients. J Med Syst 2016;40.
  • [17] Chen Q, Li W, Chen G. FUZZY P + ID controller for a constant tension winch in a cable laying system. IEEE Trans Ind Electron 2017;64:2924–32.
  • [18] Khooban MH, Abadi DNM, Alfi A, Siahi M. Swarm optimization tuned Mamdani fuzzy controller for diabetes delayed model. Turk J Electr Eng Comput Sci 2013;21:2110–26.
  • [19] Soylu S, Danisman K, Sacu IE, Alci M. Closed-loop control of blood glucose level in type-1 diabetics: a simulation study. 8th International Conference on Electrical and Electronics Engineering (ELECO). Bursa, Turkey: IEEE; 2013. p. 371–5.
  • [20] Turksoy K, Cinar A. Real-time insulin bolusing for unannounced meals using CGM measurements. IFAC-PapersOnLine 2015;48:219–24.
  • [21] Turksoy K, Frantz N, Quinn L, Dumin M, Kilkus J, Hibner B, et al. Automated insulin delivery-the light at the end of the tunnel. J Pediatrics 2017;186. 17–28.e9.
  • [22] Kovatchev BP, Breton M, Dalla Man C, Cobelli C. In silico preclinical trials: a proof of concept in closed-loop control of type 1 diabetes. J Diabetes Sci Technol 2009;3:44–55.
  • [23] Hovorka R, Canonico V, Chassin LJ, Haueter U, Massi- Benedetti M, Federici MO, et al. Nonlinear model predictive control of glucose concentration in subjects with type 1 diabetes. Physiol Meas 2004;25:905.
  • [24] Eberhart R, Kennedy J. A new optimizer using particle swarm theory. Proceedings of the Sixth International Symposium on Micro Machine and Human Science, 1995 MHS'95. IEEE; 1995. p. 39–43.
  • [25] Ratnaweera A, Halgamuge SK, Watson HC. Self-organizing hierarchical particle swarm optimizer with time-varying acceleration coefficients. IEEE Trans Evol Comput 2004;8:240–55.
  • [26] Rezaee Jordehi A, Jasni J. Parameter selection in particle swarm optimisation: a survey. J Exp Theor Artif Intell 2013;25:527–42.
  • [27] Poli R, Kennedy J, Blackwell T. Particle swarm optimization: an overview. Swarm Intell 2007;1:33–57.
  • [28] Bagis A, Senberber H. ABC algorithm based PID controller design for higher order oscillatory systems. Elektron Elektrotech 2017;23:3–9.
  • [29] Dalla Man C, Rizza RA, Cobelli C. Meal simulation model of the glucose-insulin system. IEEE Trans Biomed Eng 2007;54:1740–9.
  • [30] Colmegna PH, Sánchez-Peña RS, Gondhalekar R, Dassau E, Doyle FJ. Switched LPV glucose control in type 1 diabetes. IEEE Trans Biomed Eng 2016;63:1192–200.
  • [31] Visentin R, Dalla Man C, Cobelli C. One-day Bayesian cloning of type 1 diabetes subjects: toward a single-day UVA/Padova type 1 diabetes simulator. IEEE Trans Biomed Eng 2016;63:2416–24.
  • [32] Mamdani EH, Assilian S. An experiment in linguistic synthesis with a fuzzy logic controller. Int J Man Mach Stud 1975;7:1–13.
  • [33] Lee KH. First course on fuzzy theory and applications. Springer Science & Business Media; 2005.
  • [34] Bagis A, Karaboga D. Evolutionary algorithm-based fuzzy PD control of spillway gates of dams. J Franklin Inst 2007;344:1039–55.
  • [35] Clarke W, Kovatchev B. Statistical tools to analyze continuous glucose monitor data. Diabetes Technol Ther 2009;11:S45–54.
  • [36] Magni L, Raimondo DM, Bossi L, Dalla Man C, De Nicolao G, Kovatchev B, et al. Model predictive control of type 1 diabetes: an in silico trial. J Diabetes Sci Technol 2007;1:804–12.
  • [37] Hovorka R, Shojaee-Moradie F, Carroll PV, Chassin LJ, Gowrie IJ, Jackson NC, et al. Partitioning glucose distribution/transport, disposal, and endogenous production during IVGTT. Am J Physiol Endocrinol Metab 2002;282:E992–1007.
  • [38] Breton M, Kovatchev B. Analysis, modeling, and simulation of the accuracy of continuous glucose sensors. J Diabetes Sci Technol 2008;2:853–62.
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Identyfikator YADDA
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.