Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
This paper presents a new approach to the design methodology of road routes, in literature often referred to as the polynomial alignment. The author proposes the use of the so-called general transition curves that have been described in detail in his earlier research papers. General transition curves employ only one curvature extremum, and the whole curved transition between two extreme points of zero curvature value is described by a single equation. As a result, the curves are very useful for the creation of route geometry in accordance with the principles of polynomial alignment. The paper describes the main concept of polynomial alignment and presents equations of curves which can be used in the proposed alignment procedure. In addition, the paper gives a detailed description of design procedures.
Rocznik
Tom
Strony
art. no. e137195
Opis fizyczny
Bibliogr. 45 poz., rys., tab.
Twórcy
autor
- Faculty of Civil Engineering and Environmental Sciences, Bialystok University of Technology, ul. Wiejska 45E, 15-351 Bialystok, Poland
Bibliografia
- [1] P. Żabicki and W. Gardziejczyk, “Multicriteria analysis in planning roads – Part 1. Criteria in determining the alignment of regional roads”, Bull. Pol. Acad. Sci. Tech. Sci. 68(2), 345‒350 (2020).
- [2] E.P. Chew, C.J. Goh, and T.F. Fwa, “Simultaneous optimization of horizontal and vertical alignments for highways”, Transp. Res. Part B 23(5), 315‒329 (1989).
- [3] W.L. Hare, V.R.. Koch, and Y. Lucet, “Models and algorithms to improve earthwork operations in road design using mixed integer linear programming”, Eur. J. Oper. Res 215(2), 470‒480 (2011).
- [4] D. Hirpa, W.L. Hare, Y. Lucet, Y. Pushak, and S. Tesfamariam, “A bi-objective optimization framework for three-dimensional road alignment design”, Transp. Res. Part C 65, 61‒78 (2016).
- [5] M.K. Jha and P. Schonfeld, “A highway alignment optimization model using geographic information systems”, Transp. Res. Part A 38(6), 455‒481 (2004).
- [6] J.C. Jong and P. Schonfeld, “An evolutionary model for simultaneously optimizing three-dimensional highway alignments”, Transp. Res. Part B 37(2), 107‒128 (2003).
- [7] M.W. Kang, M.K. Jha, and P. Schonfeld, “Applicability of highway alignment optimization models”, Transp. Res. Part C 21(1), 257‒286 (2012).
- [8] A.R. Ghanizadeh and N.Heidarabadizadeh, ”Optimization of vertical alignment of highways in terms of earthwork cost using colliding bodies optimization algorithm”, Int. J. Opt. Civ. Eng. 8(4), 657‒674 (2018).
- [9] C.J. Goh, E.P. Chew, and T.F. Fwa, “Discrete and continuous models for computation of optimal vertical highway alignment. Transp. Res. Part B 22(6), 399‒409 (1988).
- [10] W. Hare, S. Hossain, Y. Lucet, and F. Rahman, “Models and strategies for efficiently determining an optimal vertical alignment of roads”, Comp. Operat. Res. 44, 161‒173 (2014).
- [11] W. Hare, Y. Lucet, and F. Rahman, “A mixed-integer linear programming model to optimize the vertical alignment considering blocks and side-slopes in road construction”, Eur. J. Oper. Res. 241(3), 631‒641 (2014).
- [12] A. Kobryń, “Optimization of vertical alignment using general transition curves”, KSCE J. Civ. Eng. 22, 2549‒2559 (2018).
- [13] V.R. Koch and Y. Lucet, “A note on: Spline technique for modeling roadway profile to minimize earthwork cost”, J. Industr. Manag. Opt. 6(2), 393‒400 (2010).
- [14] Y.S. Lee and J.F. Cheng, “Optimizing highway grades to minimize cost and maintain traffic speed”, J. Transp. Eng. 127(4), 303‒310 (2001).
- [15] Y.S. Lee and J.F. Cheng, “A model for calculating optimal vertical alignments of interchanges”, Transp. Res. Part B 35(5), 423‒445 (2001).
- [16] A.A. Moreb, “Linear programming model for finding optimal roadway grades that minimize earthwork cost”, Eur. J. Oper. Res. 93(1), 148‒154 (1996).
- [17] A.A. Moreb, “Spline technique for modeling roadway profile to minimize earthwork cost”, J. Industr. Manag. Opt. 5(2), 275‒283 (2009).
- [18] V. Calogero, “A new method in road design – polynomial alignment”, Comput. Aided Des. 1(2), 19‒29 (1969).
- [19] G. Cantisani, D. Dondi, G. Loprencipe, and A. Ranzo, “Spline curves for geometric modeling of highway design”, Proc., 2nd Int. Congress New Technologies and Modelling Tools for Road Applications to Design and Management, Societe Italiana di Infrastrutture Viarie, Ancona, Italy, 2004.
- [20] S.M. Easa and A. Mehmood, “Optimizing design of highway horizontal alignments: new substantive safety approach”, Comput. Aided Civ. Infrastruct. Eng. 23(7), 560‒573 (2008).
- [21] S. Mondal, Y. Lucet, and W. Hare, “Optimizing horizontal alignment of roads in a specified corridor”, Comput. Oper. Res. 64, 130‒138 (2015).
- [22] Y. Shafahi and M. Bagherian, “A customized particle swarm method to solve highway alignment optimization problem”, Comput. Aided Civ. Infrastruct. Eng. 28(1), 52‒67 (2013).
- [23] M.E. Vázquez-Méndez, G. Casal, D. Santamarina, and A. Castro, “A 3D model for optimizing infrastructure costs in road design”, Comput. Aided Civ. Infrastruct. Eng. 33(5), 423‒439 (2018).
- [24] M.B. Sushma and A. Maji, “A modified motion planning algorithm for horizontal highway alignment development”, Comput. Aided Civ. Infrastruct. Eng. 35(8), 818–831 (2020).
- [25] G. Casal, D. Santamarina and M.E. Vázquez-Méndez, “Optimization of horizontal alignment geometry in road design and reconstruction”, Transp. Res. Part C, 74, 261‒274 (2017).
- [26] Y. Pushak, W. Hare, and Y. Lucet, “Multiple-path selection for new highway alignments using discrete algorithms”, Eur. J. of Oper. Res. 248, 415‒427 (2016).
- [27] G. Bosurgi and A. D’Andrea, “A polynomial parametric curve (PPC-CURVE) for the design of horizontal geometry of highways”, Comp. Aided Civ. Infrastruct. Eng. 27(4), 303‒312 (2012).
- [28] G. Bosurgi, O. Pellegrino, and G. Sollazzo, “Using genetic algorithms for optimizing the PPC in the highway horizontal alignment design”, J. Comput. Civil Eng. 30(1), 04014114 (2014).
- [29] M.W. Kang and P. Schonfeld, “Artificial Intelligence in Highway Location and Alignment Optimization”, World Scientific Publishing Co., 2020.
- [30] M.K. Jha, C. McCall, and P. Schonfeld, “Using GIS, genetic algorithms, and visualization in highway development”, Comput. Aided Civ. Infrastruct. Eng. 16(6), 399‒414 (2001).
- [31] S. Dinu and G. Bordea, “A new genetic approach for transport network design and optimization”, Bull. Pol. Acad. Sci. Tech. Sci. 59(3), 263‒272 (2011).
- [32] P. Żabicki and W.Gardziejczyk, “Multicriteria analysis in planning roads – Part 2. Methodology for selecting the optimal variant of the road”, Bull. Pol. Acad. Sci. Tech. Sci. 68(2), 351‒360 (2020).
- [33] M. Velasquez and P.T. Hester, “An analysis of multi-criteria decision making methods”, Int. J. Oper. Res. 10(2), 56‒66 (2013).
- [34] J.H. Dahooiea, A.S. Vanakib, N. Mohammadic, and H.R. Firoozfard, “Selection of optimal variant route based on dynamic fuzzy GRA”, Decis. Sci. Lett. 7, 523‒534 (2018).
- [35] W. Li, H. Pu, P. Schonfeld, J. Yang, H. Zhang, L. Wang, and J. Xiong, “Mountain railway alignment optimization with bidirectional distance transform and genetic algorithm”, Comput. Aided Civ. Infrastruct. Eng. 32(8), 691‒709 (2017).
- [36] H. Pu, T. Song, P. Schonfeld, W. Li, H. Zhang, J. Wang, J. Hu, and X. Peng, “A three-dimensional distance transform for optimizing constrained mountain railway alignments”, Comput. Aided Civ. Infrastruct. Eng. 34(11), 972‒990 (2019).
- [37] T. Song, H. Pu, P. Schonfeld, H. Zhang, W. Li, J. Hu, and J. Wang, “Mountain railway alignment optimization considering geological impacts: A cost-hazard bi-objective model”, Comput. Aided Civ. Infrastruct. Eng. 35(12), 1365‒1386 (2020).
- [38] T. Song, H. Pu, P. Schonfeld, H. Zhang, W. Li, J. Hu, and J. Wang, “Bi-objective mountain railway alignment optimization incorporating seismic risk assessment”, Comput. Aided Civ. Infrastruct. Eng. 36(2). 143‒163 (2021).
- [39] M.E. Vázquez-Méndez, G. Casal, A. Castro, and D. Santamarina, “Optimization of an urban railway bypass. A case study in A Coruña-Lugo line, Northwest of Spain”, Comput. .Ind. Eng. 151, 106935 (2021).
- [40] A. Kobryń, “Polynomial solutions of transition curves”, J. Surv. Eng. 137(3), 71‒80 (2011).
- [41] A. Kobryń, “New solutions for general transition curves”, J. Surv. Eng. 140(1), 12‒21 (2014).
- [42] A. Kobryń, “Transition curves for highway geometric design”. Springer Tracts on Transportation and Traffic, Vol. 14, Springer International Publishing, Cham, Switzerland, 2017.
- [43] A.G. Fulczyk, “Trassenausgleich nach Spline-Algorithmen (TRANSA)”, Die Straße, 17(2), 65‒67 (1977) [in German].
- [44] W. Kühn, “Anwendung verallgemeinerter kubischer Spline-Funktionen für Achsberechnung von Straßen”, Die Straße, 23(2), 9‒13 (1983) [in German].
- [45] W. Kühn, “Entwurfstechnische Parameter und Kontrollgrößen zur Beurteilung einer polynomialer Trasse”, Die Straße, 23(1), 68‒71 (1983) [in German].
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-2c6be2c7-96d0-4f6a-9b9b-358571041892