PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Effect of T6 Heat Treatment on the Scratch Wear Behavior of Extruded Al-12wt.%Si Alloy

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This study investigated the effect of T6 heat treatment on the microstructure and scratch wear behavior of hypoeutectic Al-12wt.%Si alloy manufactured by extrusion. Microstructural observation identified spherical eutectic Si phases before and after the heat treatment of alloys (F, T6). Phase analysis confirmed Al matrix and Si phase as well as Al2Cu and Al3Ni, Mg2Si in both alloys. In particular, Al2Cu was finer and more evenly distributed in T6 alloy. This resulted in Vickers hardness of T6 alloy that was 2.3 times greater compared to F alloy. The scratch wear test was conducted using constant load scratch test (CLST) mode and multi-pass scratch test (MPST) mode. The scratch coefficient and worn out volume obtained by such were used to evaluate wear properties before and after heat treatment. In the case of T6 alloy, its scratch coefficient was lower than F alloy in all load ranges. After 15 repeated tests to measure worn out volume, F alloy and T6 alloy measured 1.2×10-1 mm3 and 7.8×10-2 mm3, respectively. In other words, the wear resistance of T6 alloy were confirmed to be better than those of F alloy. In addition, this study attempted to identify the microstructural factors that contribute to the better scratch wear resistance of T6 alloy and wear mechanism from surface and cross-section observations after the wear tests.
Twórcy
autor
  • Inha University, Department of Materials Science and Engineering, Incheon 22212, Republic of Korea
autor
  • Research Institute of Industrials Science & Technology, Pohang 37673, Republic of Korea
  • Light Metal Solution Co., Ltd, Yesan 32446, Republic of Korea
autor
  • Inha University, Department of Materials Science and Engineering, Incheon 22212, Republic of Korea
Bibliografia
  • [1] A. K. Gupta, B. K. Prasad, R. K. Pajnoo, S. Das, Trans. Nonferrous Met. Soc. China 22, 1041 (2012).
  • [2] V. C. Srivastava, R. K. Mandal, S. N. Ojha, Mater. Sci. Eng. A 304, 555 (2001).
  • [3] N. Sahib, T. Laoui, A. R. Daud, M. Harun, S. Radiman, R. Yahaya, Wear 249, 656 (2001).
  • [4] L. Fang, Y. Fuxiao, Z. Dazhi, Z. Liang, Mater. Sci. Eng. A 528, 3786 (2011).
  • [5] M. Zhu, Z. Jian, G. Yang, Y. Zhou, Mater. Design 36, 243 (2012).
  • [6] R. X. Li, R. D. Li, Y. H. Zhao, L. Z. He, C. X. Li, H. R. Guan, Z. Q. Hu, Materials Letters 58, 2096 (2004).
  • [7] G. S. Ham, M. S. Baek, J. H. Kim, S. W. Lee, K. A. Lee, Met. Mater. Int. 23, 35 (2017).
  • [8] S. H. Yoon, S. K. Kim, C. H. Lee, Journal of KWJS 25, 250 (2007).
  • [9] A. Amanov, S. Sasaki, D. Kim, O. Penkov, Y. S. Pyun, Tribol. Int. 64, 24 (2013).
  • [10] K. Friedrich, H. J. Sue, P. Liu, A. A. Almajid, Tribol. Int. 44, 1032 (2011).
  • [11] J. V. Stebut, R. Rezakhanlou, K. Anoun, H. Michel, M. Gantois, Thin Solid Films 181, 555 (1989).
  • [12] N. Maan, A. Groenou, Wear, 42, 365 (1977).
  • [13] S. K. Sinha, S. U. Reddy, M. Gupta, Tribol. Int. 39, 184 (2006).
  • [14] J. I. Weon, Polymer Science and Technology 20, 265 (2009).
  • [15] M. Bermudez, W. Brostow, F. Crrion-Vilches, J. Cervantes, G. Damerla, J. Perez, e-Polymers 5, 22 (2005).
  • [16] H. J. Kim and C. G. Kim, Journal of the Korean Foundrymens Society 20, 91(2000).
  • [17] H.A.H. Steen, A. Hellawell, Acta Metal. Mater. 20, 363 (1972).
  • [18] N. Chawla, U. Habel, Y. L. Shen, C. Andres, J. W. Jones, J. E. Allison, Metall. Mater. Trans. A, 31A, 531 (2000).
Uwagi
EN
1. This research was supported by Dual Use Technology Program from Republic of Korea.
PL
2. Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-2c6b9e81-d91f-4045-bba6-01a162573de6
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.