Tytuł artykułu
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Hybrid towers of wind turbines - alternative energy storage concept
Języki publikacji
Abstrakty
W pracy przedstawiono innowacyjny system energetyczny wiatrowo-wodny. Należą do niego 4 turbiny wiatrowe, aktualnie najwyższe na świecie oraz zintegrowany układ magazynowania energii – zrealizowany na dwóch poziomach. Magazyny górne zrealizowano w zbiornikach wodnych umieszczonych w fundamentach wież hybrydowych turbin wiatrowych, jako magazyn dolny wykorzystano zbiornik wodny w dolinie, odległy o 3,2 km, zlokalizowany o 200 m niżej. Komponenty układu działają w sposób zintegrowany i niezawodnie.
The paper presents an innovative wind-water energy system. It includes 4 wind turbines, currently the highest in the world and an integrated energy storage system – implemented on two levels. The upper warehouses were built in water reservoirs placed in the foundations of the hybrid turbine towers, while the bottom storehouse was a water reservoir in the Valley, 3,2 km away, located 200 m below. The system components operate In an integrated and reliable way.
Wydawca
Czasopismo
Rocznik
Tom
Strony
15--20
Opis fizyczny
Bibliogr. 47 poz., rys., tab.
Twórcy
- Politechnika Poznańska Instytut Elektrotechniki i Elektroniki Przemysłowej
autor
- Politechnika Poznańska Instytut Elektrotechniki i Elektroniki Przemysłowej
Bibliografia
- [1] Global Energy Storage for Renewables Integration Market Size And Forecast Sept. 2020, www.marketresearchintellect.com (I.2021)
- [2] Infield D., Freris L., Renewable Energy In Power Systems, A John Wiley & Sons, Ltd, Publication, 2nd Ed., 2008, UK
- [3] Raczkowski R.M., Robak S., System magazynowania energii elektrycznej jako środek poprawy elastyczności systemu elektroenergetycznego z dużym udziałem generacji OZE, Przegląd Elektrotechniczny, 97 (2021), nr. 3, 1-8
- [4] Kopyt M., Power Flow Forecasts: A Status Quo Review. Part 1: RES Generation Prediction, Przegląd Elektrotechniczny, 96 (2020), nr. 11, 1-4
- [5] Kopyt M., Power Flow Forecasts: A Status Quo Review. Part 2: Power Flow Forecasts: A Status Quo Review. Part 2: Electricity Demand and Power Flow Prediction, Przegląd Elektrotechniczny, 96 (2020), nr. 11, 5-10
- [6] Amar-Bensaber A., Benghanem M., Guerouad A., Amar- Bensaber M., Power flow control and management of a Hybrid Power System, Przegląd Elektrotechniczny, 95 (2019), nr. 1, 186-190
- [7] Energy Storage for Renewable Energy Grid Integration (ESRI) Market Analysis, Revenue, Price, Market Share, Growth Rate, Forecast to 2025, ET Press Release, www.marketwatch.com share-growth-rate-forecast-to-2025-2021-02-01, (III.2021)
- [8] Li L., Liu P., Li Z., Wang X., A multi-objective optimization approach for selection of energy storage systems, Computers&Chemical Engineering, 115 (2018), 213-225
- [9] Foley A.M., Leahy P.G., Li K., Mckeogh E.J., Morrison A.P., A long-term analysis of pumped hydro storage to firm wind power, Applied Energy, 137 (2015), 638-648
- [10]International Renewable Energy Agency, Innovative Operations of Pumped Hydropower Storage Abu Dhabi 2020
- [11] Locatelli G., Palerma E., Mancini M., Assessing the economics of large Energy Storage Plants with an optimisation methodology, Energy, 83 (2015), 15-28
- [12] Frydrychowicz - Jastrzębska G., El Hierro Renewable Energy Hybrid System: A Tough Compromise, Energies, 11 (2018), nr. 10, 1-20
- [13] van Hout P., Assessing the impacts of land use change and climate change on potential hydropower production in the Amazon, Master Thesis Earth System Science Climate Studies, Wageningen UR, 2013
- [14] Ravazzani G., Dalla Valle F., Gaudard L., MendlikT., Gobiet A., Mancini M., Assessing Climate Impacts on Hydropower Production: The Case of the Toce River Basin, Climate, 4 (2016), nr. 2, 1-15
- [15] Pfister S., Scherer L., Buxmann K., Waterscarcity footprint of hydropower based on a season al approach-Global assessment with sensitivities of model Assumption tested on specific cases, Sc. of The Total Environment, 724 (2020), 2-28
- [16] Scherer L., Pfister S., Global water footprint assessment of hydropower, Renewable Energy, 99 (2016), 711-720
- [17] Frydrychowicz-Jastrzębska G., The Innovative Gaildorf Wind- Water Project Guarantees Reliability of Power Supply, IntechOpen Innovation In Energy Systems New Technologies for Changing Paradigms, London, UK, 2019, 207-224
- [18] Info Gaildorf News 2019, https://www.max-boegl.de/en/(V2020)
- [19] Frydrychowicz-Jastrzębska G., Bugała A., Janczak D., Dach J., Zaborowicz M., The efficiency of the modern wind turbine as a function of the wind energy potential resulting from the construction, 3rd International Conference on Energy and Environment: Bringing together Engineering and Economics, Porto, Portugal, 2017, 335-342
- [20] GE Renewable Energy, GE’s 3 MW Platform Powerful and Efficient GE Renewable Energy Trademark of General Electric Company 2017,https://www.ge.com/content/dam/gepowerrene wables/global/en_US/downloads/brochures/wind-onshore- 3mw-wind-turbine--platform-gea32208b-r1.pdf (III 2021)
- [21] Gipe P, Fundamentals of Wind Energy wind-works.org (I 2021)
- [22] St. Martin C.M., Lundquist J.K., Clifton A., Poulos G.S., and Schreck S.J., Wind turbine power production and annual energy production depend on atmospheric stability and turbulence, Wind Energy Sciences, 1 (2016), 221-236
- [23] Wizelius T., Wind Power Projects: Theory and Practice, Routledge 1st Ed., London, NY 2015
- [24] Borja, M. A., Lagunas, J., Miscalculations on the estimation of annualenergyoutput (AEO) of wind farm Project, Energy Procedia, 57 (2014),698-705
- [25] Savenkov M., On the Truncated Weibull Distribution and its Usefulness in Evaluating the Theoretical Capacity Factor of Potential Wind (or Wave) Energy Sites, University Journal of Engineering and Technology, 1 (2009), 21-25
- [26] Sumair M., Aized T., Raza Gardezi S.A.R., Rehman S.M.S., ur Rehman S.U., A newly proposed method for Weibull parameters estimation and assessment of wind potential in Southern Punjab, Energy Reports, 6 (2020), 1250-1261
- [27] Islam M.S., Mohandes M., Rehman S., Vertical extrapolation of wind speed Rusing artificial neural network hybrid system, Neural Computing and Applications, 28 (2017), n. 8, 2351-2361
- [28] Weather, www.meteoblue.com, (X 2006-IV 2021)
- [29] 3MW Windturbine Platform 2019, https://www.ge.com/ renewable energy/wind-energy/onshore-wind/turbines/3mwplatform (XII. 2021)
- [30]World Champion of Height In Wind Assembly Case Study Max Bógl, https://www.alkitronic.com file admin /user_upload /referenzen/Projekte/Downloads (VII 2021)
- [31] https://www.max-boegl.den/news/pilot-project-with-highcapacity- for-innovation (III 2021)
- [32] Höchste Windkraftanlagen der Welt: Max Bögl baut mit Liebherr-Mobilkran modernen Energiespeicher, 2017, Cranemarket 24 (XII 2018)
- [33] Bilfinger liefert Verteilrohrleitung für Wasserbatterie-Projekt- Bilfinger SE 04.09.2018,https://www.bilfinger.com (12.2020)
- [34] Reidy R., Voith to Deliver PumpTurbines for Wind/Pumped Storage Power Plant. World Pumps (2016). https://www.worldpumps.com /Power-generation/news/voith-todeliver- pump-turbines-for-windpumped (12 2020)
- [35] Innovative Combination of Wind and Water–Voith to deliwer Pump Turbines for First Combination of Wind and Pumped Storage Power Plant 2016, http://voith/com corp-en-newsroom/ pressreleases_72434.html (VIII 2020)
- [36] Kavurmaci, B, C., Kutay, Aradag, S., Tascioglu, Y., Model Testing of Francis-Type Hydraulic Turbines, Journal - Measurement and Control, 2017/04/01, 50 (3), (2017), 70-73
- [37] Neidhardt T., Magnoli M., Gummer J., High Part-load Fluctuations In Francis Turbines and the Applicability of Model Test data, 2017, Conf.Hydro, Seville, Spain, Oct. 2017, 1-10.
- [38] Method Used to Lay Pipe for Naturstromspeicher Gaildorf Energy Storage Pilot Project Wins Avard. Hydro Industry FAQS and Resources, 2019. https://www.hydroworld.com /articles/ 2019/02/method-used-to-lay-pipe-for-naturstromspeichergaildorf- energy-storage-pilot-project-wins-award-html,(X 2020)
- [39] New towers and hub heights for North America, AltEnergyMag,https://www.altenergymag.com/s/2019/05(I2021)
- [40] 90 Hybrid Towers erected in Thailand using Mobile Fabrication Max Bögl builds some of Asia’s tallest wind turbines, Media Release Neumarkt, January 22, 2019 (I 2021)
- [41] German solutions for renewable energies in Japan, March 12, 2018, https://www.mbrenewables.com/ (VIII 2020)
- [42] Vestas and Max Bögl Wind AG are joining forces to lead the energy transition in Germany and Austria to success, Press release Neumarkt, June 16, 2020, https://www.mbrenewables. com/en// (III 2021)
- [43] Hybrid Towers of the second generation used for the first time, November 12, 2019, https://www.mbrenewables.com (I 2021)
- [44] Sustainable train transport for concrete tower segments, June 24, 2020, Sustainability at the top of the list: Train transport for concrete to wer segments of wind turbines https://www.mbrenewables.com/en/transport (IX 2020)
- [45] Max Bögl-Wust-Kooperation bringt Windparkprojekt Wargolshausen- Wülfershausen wieder auf Kurs 7.APRIL 2021,https://www.max-boegl.de(V 2021)
- [46] Siemens Gamesa and Max Bögl Wind AG sign partnership agreement News Siemens Gamesa and Max Bögl Wind AG sign partnership agrement (I2021).
- [47] Tselepis S., Storage for non-mainland grids and Rother special situations.The future role of energy storage In South- Eastern Europe. Proc. of the Enlargement and Integration Action Workshop, Tirana Albania, 21-22 Oct. 2014.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-2c69f950-194e-46b9-8e97-2f175d1bc59b