PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Numerical optimization of the BAT-CELL Bio-Ambient-Tests method for engine exhausts toxicity evaluation

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The BAT-CELL Bio-Ambient-Tests method is based on the assessment of the influence of the actual toxicity of various types of gas mixtures on living cells, taking into account the additive synergism. Work has been carried out on the application of the BAT-CELL method for testing engine exhaust gases. The application of computational fluid mechanics using Ansys Fluent made it possible to analyse the flow of engine exhaust gases through the aspiration system used, including analysis of shear stress values and their uniformity distribution on the bottom wall of the sampler containing cell culture on the bottom wall of the sampler. The appropriate flow rate of exhaust gases through the aspiration system and the shape of aspiration tubing for the sampler were selected in order to enable uniform contact of gas particles with the cell surface and not to damage them mechanically. The simulation results were verified in real-life tests and confirmed the theoretical assumptions.
Czasopismo
Rocznik
Strony
19--25
Opis fizyczny
Bibliogr. 33 poz., fot. kolor., rys., wykr.
Twórcy
  • Faculty of Mechanical Engineering, Wrocław University of Science and Technology
autor
  • Faculty of Mechanical Engineering, Wrocław University of Science and Technology
  • Faculty of Mechanical Engineering, Wrocław University of Science and Technology
Bibliografia
  • [1] Barro C, Parravicini M, Boulouchos K, Liati A. Neat poly-oxymethylene dimethyl ether in a diesel engine; part 2: exhaust emission analysis. Fuel. 2018;(234):1414-1421. https://doi.org/10.1016/j.fuel.2018.07.108
  • [2] Bisig C, Comte P, Güdel M, Czerwinski J, Mayer A, Müller L et al. Assessment of lung cell toxicity of various gasoline engine exhausts using a versatile in vitro exposure system. Environ Pollut. 2018;(235):263-271 https://doi.org/10.1016/j.envpol.2017.12.061
  • [3] California Environmental Agency. Available online: https://ww3.arb.ca.gov/research/resnotes/notes/94-22.htm
  • [4] Carslaw DC, Farren NJ, Vaughan AR. The diminishing importance of nitrogen dioxide emissions from road vehicle exhaust. Atmos Environ. 2019;(1):100002. https://doi.org/10.1016/j.aeaoa.2018.100002
  • [5] Degraeuwe B, Weiss M. Does the New European Driving Cycle (NEDC) really fail to capture the NOx emissions of diesel cars in Europe? Environ Pollut. 2017;(222):234-241. https://doi.org/10.1016/j.envpol.2016.12.050
  • [6] Deng X, Chen Z, Wang X, Zhen H, Xie R. Exhaust noise, performance and emission characteristics of spark ignition engine fuelled with pure gasoline and hydrous ethanol gasoline blends. Case Studies in Thermal Engineering. 2018;(12):55-63. https://doi.org/10.1016/j.csite.2018.02.004
  • [7] Diemel O, Honza R, Ding C-P, Böhm B, Wagner S. In situ sensor for cycle-resolved measurement of temperature and mole fractions in IC engine exhaust gases. P Combust Inst. 2019;37(2):1453-1460. https://doi.org/10.1016/j.proci.2018.06.182
  • [8] Dimaratos A, Toumasatos Z, Triantafyllopoulos G, Kontses A, Samaras Z. Real-world gaseous and particle emissions of a bi-fuel gasoline/CNG Euro 6 passenger car. Transport Res D-Tr E D. 2020;(82):102307. https://doi.org/10.1016/j.trd.2020.102307
  • [9] Gallus J, Kirchner U, Vogt R, Benter T. Impact of driving style and road grade on gaseous exhaust emissions of passenger vehicles measured by a Portable Emission Measurement System (PEMS). Transport Res D-Tr E D. 2017;52(A): 215-226. https://doi.org/10.1016/j.trd.2017.03.011
  • [10] Hao X, Zhang X, Cao X, Shen X, Shi J, Yao Z. Characterization and carcinogenic risk assessment of polycyclic aro matic and nitro-polycyclic aromatic hydrocarbons in exhaust emission from gasoline passenger cars using on-road measurements in Beijing, China. Sci Total Environ. 2018;(645): 347-355. https://doi.org/10.1016/j.scitotenv.2018.07.113
  • [11] Xie X, Zhang Y, He Y, You K, Fan B, Yu D et al. Parallel attention-based LSTM for building a prediction model of vehicle emissions using PEMS and OBD. Measurement. 2021;(185):110074. https://doi.org/10.1016/j.measurement.2021.110074
  • [12] Janicka A. Ocena toksyczności mikroatmosfery środowiska wnętrza pojazdu samochodowego. Oficyna Wydawnicza Politechniki Wrocławskiej, Wrocław 2013.
  • [13] Jasiński R, Markowski J, Pielecha J. Probe positioning for the exhaust emissions measurements. Procedia Engineer. 2017;(192):381-386. https://doi.org/10.1016/j.proeng.2017.06.066
  • [14] Jeżowiecka-Kabsch K, Szewczyk H. Mechanika płynów. Oficyna Wydawnicza Politechniki Wrocławskiej, Wrocław 2001.
  • [15] Kamińska M, Andrzejewski M, Daszkiewicz P. Research of ecological indicators of two-way vehicle in stationary conditions. Combustion Engines. 2022;188(1):30-34. https://doi.org/10.19206/CE-142169
  • [16] Kerbachi R, Chikhi S, Boughedaoui M. Development of real exhaust emission from passenger cars in Algeria by using on-board measurement. Energy Proced. 2017;(136):388-393. https://doi.org/10.1016/j.egypro.2017.10.268
  • [17] Kęska A, Janicka A. Application of bat-cell bio-ambient tests in exhaust gas emissions examinations for Euro 4 and Euro 6 combustion engines. J Mach Engineer. 2017;17(4): 83-90. https://doi.org/10.5604/01.3001.0010.7007
  • [18] Kęska A, Janicka A. Determination of volatile organic compounds for combustion engines compliant with Euro 4 and Euro 6. Proceedings of ECOpole. 2017;11(2):387-394. https://doi.org/10.2429/proc.2017.11(2)038
  • [19] Kęska A. Metoda oceny toksyczności spalin silnikowych w aspekcie analizy rozwoju standardów emisyjnych. Raporty Wydziału Mechanicznego Politechniki Wrocławskiej. 2020; 26(155).
  • [20] Kuranc A. Exhaust emission test performance with the use of the signal from air flow meter. Eksploat Niezawodn. 2015;17(1):129-134.
  • [21] Lebrecht G, Czerczak S, Szymczak W. Benzen. Dokumentacja proponowanych wartości dopuszczalnych poziomów narażenia zawodowego. Podstawy i Metody Oceny Środowiska Pracy. 2003, 1(35).
  • [22] Manahan SE. Toksykologia środowiska. Aspekty chemiczne i biochemiczne. Wydawnictwo Naukowe PWN, Warszawa 2006.
  • [23] Mendyka B, Radek P, Janicka A, Czarny A, Zaczyńska E, Pawlik M. Cytotoksyczność i mutagenność preparatów zawierających domieszkę estru metylowego oleju rzepakowego. Medycyna Środowiskowa. 2005;8(2).
  • [24] Merkisz J, Andrzejewski M, Pielecha J. Comparison of carbon dioxide emissions in real traffic conditions of the vehicle with the values obtained in the certification test on the background of European standards. Combustion Engines. 2011-SC-057, 2011.
  • [25] Poulakis E, Philippopoulos C. Photocatalytic treatment of automotive exhaust emissions. Chem Eng J. 2017;(309): 178-186. https://doi.org/10.1016/j.cej.2016.10.030
  • [26] Shen X, Shi J, Cao X, Zhang X, Zhang W, Wu H et al. Real-world exhaust emissions and fuel consumption for diesel vehicles fueled by waste cooking oil biodiesel blends. Atmos Environ. 2018;(191):249-257. https://doi.org/10.1016/j.atmosenv.2018.08.004
  • [27] Szwaja S, Ansari E, Rao S, Szwaja M, Grab-Rogalinski K, Naber JD et al. Influence of exhaust residuals on combustion phases, exhaust toxic emission and fuel consumption from a natural gas fueled spark-ignition engine. Energ Convers Manage. 2018;(165):440-446. https://doi.org/10.1016/j.enconman.2018.03.075
  • [28] Szymlet N, Kamińska M, Lijewski P, Rymaniak Ł, Tutak P. Use of toxicity indicators related to CO2 emissions in the ecological assessment of an two-wheel vehicle. Combustion Engines. 2021;187(4):36-41. https://doi.org/10.19206/CE-141487
  • [29] Wang Z, Liu X, Mu Y, Yang X, Yang L, Jiang Z. The exhaust emission online detection on the diesel engine. Optik. 2018;(164):126-131. https://doi.org/10.1016/j.ijleo.2018.02.047
  • [30] Wang J, Gui H, Yang Z, Yu T, Zhang X, Liu J. Real-world gaseous emission characteristics of natural gas heavy-duty sanitation trucks. J Environ Sci. 2022;(115):319-329. https://doi.org/10.1016/j.jes.2021.06.023
  • [31] Yusoff MNAM, Zulkifli NWM, Masjuki HH, Harith MH, Syahir AZ, Khuong LS et al. Comparative assessment of ethanol and isobutanol addition in gasoline on engine performance and exhaust emissions. J Clean Prod. 2018; (190):483-495. https://doi.org/10.1016/j.jclepro.2018.04.183
  • [32] Zardini AA, Suarez-Bertoa R, Forni F, Montigny F, Otura-Garcia M, Carriero M et al. Reducing the exhaust emissions of unregulated pollutants from small gasoline engines with alkylate fuel and low-ash lube oil. Environ Res. 2019;(170): 203-214. https://doi.org/10.1016/j.envres.2018.12.021
  • [33] Ziółkowski A, Fuć P, Lijewski P, Rymaniak Ł, Daszkiewicz P, Kamińska M et al. Analysis of exhaust emission measurements in rural conditions from heavy-duty vehicle. Combustion Engines. 2020;182(3):54-58. https://doi.org/10.19206/CE-2020-309
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-2c69e558-9e41-48ca-a036-581d98899e93
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.