PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Numerical prediction of GTD-350 turboshaft engine combustor deterioration

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The aim of this article is to describe the use of Computational Fluid Dynamics (CFD) model for turboshaft combustor chamber deterioration analysis. To show advantages of the proposed approach the test bench of GTD-350 turboshaft engine operating at the Institute of Heat Engineering, Warsaw University of Technology was used as an example. The CFD modelling of the reactive flow inside 40º sector of GTD-350 engine section was developed. Proposed modelling technique provides good correlations with experimental data and shows that the combustor front wall soot accumulation is clearly related to the fuel droplets residence time and the oxygen mass fraction. The temperature distribution inside the combustion chamber allows concluding on possible hot distress areas on the combustion chamber liner walls. Engine borescope inspection (BSI) of the compressor, combustion chamber, compressor turbine and power turbine is used to correlate model predictions with a real GTD-350 engine deterioration. Very good correlation of the engine BSI observations with the numerical predictions proves usefulness of the developed model. Finally, advantages and future applications of the developed model are discussed.
Twórcy
  • Institute of Aviation Krakowska Avenue 110/114, 02-256 Warsaw, Poland tel.: +48228460011, fax: +48228464432
autor
  • Warsaw University of Technology Institute of Heat Engineering Nowowiejska Street 21/25, 00-665 Warsaw, Poland tel.: +48 22 2345222
autor
  • Warsaw University of Technology Institute of Heat Engineering Nowowiejska Street 21/25, 00-665 Warsaw, Poland tel.: +48 22 2345222
Bibliografia
  • [1] Herbert, L., Designing for Reliability, Maintainability, and Sustainability (RM&S) in Military Jet Fighter Aircraft Engines, Master Thesis, Massachusetts Institute of Technology, 2002.
  • [2] Kumar, U. D., Crocker, J., Knezevic, J., Evolutionary Maintenance for Aircraft Engines, Proceedings Annual Reliability and Maintainability Symposium, pp. 62-68, 1999.
  • [3] Batalha, E., Aircraft Engines Maintenance Costs and Reliability. An Appraisal of the Decision Process to Remove an Engine for a Shop Visit Aiming at Minimum Maintenance Unit Cost, Master Thesis, Universidade Nova de Lisboa, 2012.
  • [4] Kozik, P., Sęp, J., Aircraft Engine overhaul demand frecasting unsin ANN, Management and Production Engineering Review, Vol. 3, No. 2, pp. 21-26, 2012.
  • [5] Liu, D., Zhang, H., Polycarpou, M., Alippi, C., He, H., Elman-Style Process Neural Network with Application to Aircraft Engine Health Condition Monitoring, Advances in Neural Networks, Prodceedings of the 8th International Symposium on Neural Networks, Guilin, China 2011.
  • [6] Soumitra, P., Kapoor, K., Jasani, D., Dudhwewala, R., Gowda, V. B., Gopalakrishnan Nair T.R., Application of Artificial Neural Networks in Aircraft Maintenance, Repair and Overhaul Solutions, Analysis and Manufacturing Technologies, 2008.
  • [7] Kopytov, E., Labendik, V., Yunusov, S., Tarasov, A., Managing and Control of Aircraft Power Using Artificial Neural Networks, Proceeding of the 7th International Conference Reliability and Statistics in Transportation and Communication, 2007
  • [8] Garcia Nieto, P. J., Garcia-Gonzales, E., Sanches Lasheras, F., de Cos Juez, F. J., Hybrid PSO–SVM-based method for forecasting of the remaining useful life for aircraft engines and evaluation of its reliability, Reliability Engineering & System Safety,Vol. 138, pp. 219-231, 2015.
  • [9] Simon, D. L., An Integrated Architecture for On-Board Aircraft Engine Performance Trend Monitoring and Gas Path Fault Diagnostics, 57th Joint Army-Navy-NASA-Air Force (JANNAF) Propulsion Meeting sponsored by the JANNAF Interagency Propulsion Committee, 2010.
  • [10] Krajček, K., Nikolić, D., Domitrović, A., Aircraft Performance Monitoring from Fliht Data, Tehnički vjesnik, Vol. 22, No. 5, pp. 1337-1344, 2015.
  • [11] Grzegorzewski, J., Śmigłowiec Mi-2, Typy broni i uzbrojenia, No. 60, Wydawnictwo Ministerstwa Obrony Narodowej, Warsaw 1979.
  • [12] Lubińska, K., Modernization of the GTD-350 helicopter engine test bench, ODIUT Automex Sp. z o.o., Gdańsk 2014
  • [13] Gieras, M., Computational study of an aerodynamic flow through a turbine engine combustor, Archivum Combustionis, Vol. 33, No. 1, pp. 27-40, 2013.
  • [14] Gieras, M., Computational study of a combustion process in a turbine engine combustor, Archivum Combustionis, Vol. 33, No. 1, pp. 11-26, 2013.
  • [15] Gieras, M., Computational study of the impact of chosen geometry parameters on stability of recirculation zone in GTD-350 gas turbine combustor, Archivum Combustionis, Vol. 34, No. 2, pp.101-110, 2014.
  • [16] ANSYS Inc., ANSYS FLUENT Theory Guide, Release 12.0, 2009.
  • [17] http://hazet.toolteam.de.com/en-GB/hazet-flexible-probe-6mm-4812n-1as-4000896187072.html.
  • [18] http://www.pwrze.com/gfx/wsk4/userfiles/wsk/produkcja_rodzima/zal_nr_3_gtd-350_wersja_2 pl.pdf.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-2c68e6f3-4513-4e1f-9a8a-455307eaea7e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.