Powiadomienia systemowe
- Sesja wygasła!
Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The size effect is a well-known characteristic of concrete structures. However, in the case of fibre-reinforced concrete (FRC), this issue is not thoroughly explored. Most design recommendations of FRC neglect the size effect or handle the behaviour of FRC structures in case of different structural sizes similar to plain concrete structures (assuming FRC is a homogeneous material). The aim of this paper is to show that the size effect of FRC can be divided, the share of the concrete matrix and the fibres in the size-dependent properties is separable. For the size effect research fifteen synthetic macro fibre reinforced concrete and six plain concrete beam specimens were prepared and tested in three different sizes and then evaluated with the semi-discrete analytical (SDA) model. The analysis of the experimental specimens has shown that the size effect significantly influences the concrete material in the case of FRC with softening material behaviour, but the residual loadbearing capacity which mainly arise from the local bridging effect of fibres is essentially independent of the structural size. It is also shown in this paper that the two defining parameters of the SDA model is independent of the structural size, so the model provides an excellent tool in case of the design of real-sized FRC structures.
Czasopismo
Rocznik
Tom
Strony
117--129
Opis fizyczny
Bibliogr. 24 poz.
Twórcy
autor
- PhD student; Budapest University of Technology and Economics; Műegyetem rkp. 3., 1111 Budapest, Hungary
autor
- Assistant Prof., PhD; Budapest University of Technology and Economics; Műegyetem rkp. 3., 1111 Budapest,Hungary
Bibliografia
- [1] Bazant, Z. P., & Planas, B. (1998). Fracture and size effect in concrete and other quasibrittle materials. London: CRC Press.
- [2] Bazant, Z.P. (1984). Size effect in blunt fracture: concrete, rock, metal. Journal of Engineering Mechanics, 110(4), 518–535 https://doi.org/10.1061/(ASCE)0733-9399(1984)110:4(518)
- [3] Jin, L., Yu, M., & Du, X. (2020). Size Effect on Static Splitting Tensile Strength of Concrete: Experimental and Numerical Studies. Journal of Materials in Civil Engineering, 32(10), 04020308. https://doi.org/10.1061/(ASCE)MT.1943-5533.0003382
- [4] Nguyen, D., Kim, D.J., Ryu, G.S., & Koh, K.T. (2013). Size effect on flexural behaviour of ultra-high-performance hybrid fibre-reinforced concrete. Composites Part B-engineering, 45(1), 1104–1116. https://doi.org/10.1016/j.compositesb.2012.07.012
- [5] Mahmud, G.H., Yang, Z., & Hassan, A. (2013.) Experimental and numerical studies of size effects of Ultra High Performance Steel Fibre Reinforced Concrete (UHPFRC) beams. Construction and Building Materials, 48, 1027–1034. https://doi.org/10.1016/j.conbuildmat.2013.07.061
- [6] Yoo, D.Y., Banthia, N., Yang, J.M., & Yoon, Y.S. (2016). Size effect in normal- and high-strength amorphous metallic and steel fibre reinforced concrete beams. Construction and Building Materials, 121, 676–685. https://doi.org/10.1016/j.conbuildmat.2016.06.040
- [7] Awinda, K., Chen, J., & Barnett, S.J. (2016). Investigating geometrical size effect on the flexural strength of the ultrahigh performance fibre reinforced concrete using the cohesive crack model Construction and Building Materials, 105, 123–13. https://doi.org/10.1016/j.conbuildmat.2015.12.012
- [8] Vlietstra, D. (2018). Does structural synthetic fibre reduce or eliminate the well documented size effect phenomena prevalent in concrete structures? (Dissertation). University of Leeds.
- [9] Galeote, E., Blanco, A., & Fuente, A. (2020). Design-oriented approach to determine FRC constitutive law parameters considering the size effect. Composite Structures, 239, 112036. https://doi.org/10.1016/j.compstruct.2020.112036
- [10] fib (Fédération internationale du béton) (2010). Model code for concrete structures 2010. Lausanne, Switzerland.
- [11] CNR 204/2006. (2006). Guide for the design and construction of fibre-reinforced concrete structures. Advisory Committee on Technical Recommendations for Construction, Rome, 2006.
- [12] DBV (Deutscher Beton und Bautechnik Verein) (2001). Stahlfaserbeton. Deutsche Beton Vereins, 2001.
- [13] Vandewalle, L., et al. (2003). RILEM TC 162-TDF: Test and design methods for steel fibre reinforced concrete: – design method – Final recommendation. Materials and Structures, 36(262), 560–567. https://doi.org/10.1617/14007.
- [14] Blanco, A., et al. (2013). Application of constitutive models in European codes to RC–FRC. Construction and Building Materials, 40, 246–259. https://doi.org/10.1016/j.conbuildmat.2012.09.096
- [15] di Prisco, M., Colombo, M., & Dozio, D. (2013). Fibre-reinforced concrete in fib Model Code 2010: Principles, models and test validation. Structural Concrete, 14(4), 342–361. https://doi.org/10.1002/suco.201300021.
- [16] ACI Committee 544. (Sept.–Oct. 1998). Design considerations for steel fibre reinforced concrete. ACI Structural Journal, 85(5), 563–580.
- [17] ACI Committee 544. (2002). State-of-the-Art Report on Fibre Reinforced Concrete. ACI Structural Journal, 544.1R-96.
- [18] Vandewalle, L., et al. (2002). RILEM TC 162-TDF: Test and design methods for steel fibre reinforced concrete: Design of steel fibre reinforced concrete using the - in method: principles and applications. Materials and Structures, 35(249), 262–278. https://doi.org/10.1007/BF02482132.
- [19] Tóth, M., & Pluzsik, A. (2020). Verification of a new semi discrete beam model for fibre reinforced concrete beams. Journal of Materials in Civil Engineering, 32(7), 04020156. https://doi.org/10.1061/(ASCE)MT.1943-5533.0003218.
- [20] RILEM (1990). Size-effect method for determining fracture energy and process zone size of concrete. Materials and Structures, 23, 461–465. (RILEM Draft Recommendation, TC 89-FMT Fracture Mechanics of Concrete – Test methods.)
- [21] Vandewalle, L., et al. (2002). RILEM TC 162-TDF: Test and design methods for steel fibre reinforced concrete: Bending test—Final recommendation. Materials and Structures, 35(253), 579–582. https://doi.org/10.1617/13884.
- [22] Tóth, M., Pluzsik, A., Pluzsik, T., & Morlin, B. (2018). Experimental Investigations of Pull-out Behaviour of Synthetic Fibres. Architecture Civil Engineering Environment, 11(2), 89–95. https://doi.org/10.21307/ACEE-2018-026.
- [23] Tóth, M., & Pluzsik, A. (2021). Using SDA Model in the Designing Process of Fibre Reinforced Concrete. Journal of Materials in Civil Engineering, 33(8), 04021191. https://doi.org/10.1061/(ASCE)MT.1943-5533.0003803
- [24] Tóth, M., & Pluzsik, A. (2018). Semi-discrete analytical beam model for fibre reinforced concrete beams. In Proc., 12th Int. Ph.D. Symp. in Civil Engineering Czech Technical University in Prague, edited by A. Kohoutková, 379–386. Lausanne, Switzerland: International Federation for Structural Concrete.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-2c659960-c561-4d5c-99dc-690cc868f439