PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Influence of Natural Ageing on Impact Strength of the EN AC-AlSi9Cu3(Fe) Alloy

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Growing market demand, more and more efficient and cleaner vehicles create a challenge for automotive industry. Properties of aluminum, such as: high strength stiffness to weight ratio, high fluidity and castability, easy machinability and weldability and good corrosion resistance make them ideal candidate to replacement of a heavier materials used in vehicles, and the same, have direct effect on fuel consumption. Comparing to steel, titanium or carbon fibers, aluminum alloys are characterized by low impact strength, which can be improved by a heat treatment. In this study one investigated the effect of the heat treatment (natural ageing) on the EN AC-AlSi9Cu3(Fe) alloy modified with strontium. Solution heat treatment temperature’s ranges were selected on the base of heating (melting) curves recorded with use of the thermal derivative analysis (ATD) method. Temperatures of the solution heat treatment were 495°C, 510°C, and 525°C ± 5°C, while the solutioning time ranged from 15 to 105 minutes (15; 60 and 105 min.). Time of the ageing amounted to 1, 3 and 7 days. To determine impact strength of the alloy after performed heat treatment one implemented simplified Charpy test. Maximal values of the impact strength (9,6 J/cm2) were obtained for solutioning temperature 510°C and solutioning time 15 minutes, after seven days of ageing. Obtained results enabled determination of solutioning parameters, which allow obtainment of increased impact strength of the investigation alloy for the T4 heat treatment.
Rocznik
Strony
81--84
Opis fizyczny
Bibliogr. 16 poz., rys., tab., wykr.
Twórcy
autor
  • University of Bielsko-Biala, Faculty of Chipless Forming Technology, ul. Willowa 2, 43- 309 Bielsko - Biała, Poland
autor
  • University of Bielsko-Biala, Faculty of Chipless Forming Technology, ul. Willowa 2, 43- 309 Bielsko - Biała, Poland
Bibliografia
  • [1] Kurihara, Y. (1994). The role of aluminum in automotive weight reduction-part III. JOM, 46(5), 12-13. DOI: 10.1007/BF03220687.
  • [2] Hirsch, J. (2011). Aluminium in Innovative Light-Weight Car Design. Materials Transactions, 52(5), 818-824. DOI: 10.2320/matertrans.L-MZ201132.
  • [3] Hirsch, J. & Al-Samman, T. (2013). Superior light metals by texture engineering: Optimized aluminum and magnesium alloys for automotive applications. Acta Materialia, 61(3), 818-843. DOI:10.1016/j.actamat.2012.10.044.
  • [4] Miller, W.S., et al. (2000). Recent development in aluminium alloys for the automotive industry, Materials Science and Engineering A, 280(1), 37-49. DOI: 10.1016/S0921-5093(99)00653-X.
  • [5] Sears. K (1997). Automotive Engineering: Strategic Overview 2, Steel World, 1, 55-68.
  • [6] Ostermann, F. (1993). Aluminium materials technology for automobile construction. Michigan. John Wiley & Sons.
  • [7] Padmanaban, D.A. & Kurien, G. (2012). Silumins: The Automotive Alloys. Advanced Materials & Processes, 170(3), 28-30.
  • [8] Kaufman, J.G., Rooy, E.L. (2004). Aluminum Alloy, Casting, Properties, Processes and Applications, Ohio. ASM International.
  • [9] E. Czekaj, E. (2011). Nickiel-free piston silumins of high dimensional stability. Krakow. Foundry Research Institute. (in Polish).
  • [10] Li, Z., et. al. (2004). Parameters controlling the performance of AA319-type alloys Part II. Impact properties and fractography. Materials Science and Engineering A, 367(1-2), 111-122. DOI: 10.1016/j.msea.2003.09.096.
  • [11] Shivkumar, S., Wang, L., Keller, C. (1994). Impact properties of A356-T6 alloys. Journal of Materials Engineering and Performance, 3(1), 83-90. DOI: 10.1007/BF02654503.
  • [12] Pezda, J. (2009). Effect of dispersion hardening on impact resistance of EN AC-AlSi12Cu2Fe silumin. Archives of Foundry Engineering, 9(2), 21-24.
  • [13] Sjölander, E. & Seifeddine, S. (2010). The heat treatment of Al-Si-Cu-Mg casting alloys. Journal of Materials Processing Technology, 210, 1249-1259. DOI: 10.1016/j.jmatprotec.2010.03.020.
  • [14] Pezda, J. (2014). The effect of the T6 heat treatment on hardness and microstructure of the EN AC-AlSi12CuNiMg alloy. Metalurgija, 53(1), 63-66.
  • [15] Mrówka-Nowotnik, G. & Sieniawski, J. (2005). Influence of heat treatment on the microstructure and mechanical properties of 6005 and 6082 aluminium alloys. Journal of Materials Processing Technology, 162-163, 367-372.
  • [16] Poniewierski, Z. (1989). Crystallization, structure and properties of silumins. Warszawa. WNT. (in Polish).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-2c630f54-e0b1-4f16-9a74-54cb824c6cff
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.