PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

A computer scientist's perspective on approximation of IFS invariant sets and measures with the random iteration algorithm

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
We study invariant sets and measures generated by iterated function systems defined on countable discrete spaces that are uniform grids of a finite dimension. The discrete spaces of this type can be considered as models of spaces in which actual numerical computation takes place. In this context, we investigate the possibility of the application of the random iteration algorithm to approximate these discrete IFS invariant sets and measures. The problems concerning a discretization of hyperbolic IFSs are considered as special cases of this more general setting.
Twórcy
  • Warsaw University of Technology
Bibliografia
  • [1] M.F. Barnsley, Fractals everywhere, 2nd ed., Boston Academic Press, 1993.
  • [2] M. Peruggia, Discrete Iterated Function Systems. A. K. Peters Wellesley MA, 1993.
  • [3] W.H. Press, S.A. Teukolsky, W.T. Vetterling, and B.P. Flannery, Numer-ical Recipes in C (2nd Ed.), Cambridge University Press, 1992.
  • [4] J. Harrison, ”A machine-checked theory of floating point arithmetic”. In: Bertot Y, Dowek G, Th´ery L, Hirschowitz A, Paulin C (eds). Theorem Proving in Higher Order Logics. TPHOLs 1999. Lecture Notes in Computer Science, vol. 1690. Springer, Berlin, Heidelberg, 1999, pp. 113-130.
  • [5] J-M. Muller, ”On the definition of ulp(x)”, Research Report, INRIA, LIP, 2005.
  • [6] P. Diaconis and D. Freedman, ”Iterated Random Functions”, SIAM Rev., vol. 41, pp. 45-76, 1999.
  • [7] Ö. Stenflo, ”Uniqueness of invariant measures for place-dependent random iterations of functions”, IMA Vol. Math. Appl., vol. 132, pp. 13-32, 2002.
  • [8] M.F. Barnsley, S.G. Demko, J.H. Elton and J.S. Geronimo, ”Invariant measures for Markov processes arising from iterated function systems with place-dependent probabilities”, Ann. Inst. H.Poincar´e Probab. Statist., vol. 24, pp. 367-394, 1988.
  • [9] J.H. Elton, ”An ergodic theorem for iterated maps”, Ergodic Theory and Dynam. Systems, vol. 7, pp. 481-488, 1987.
  • [10] R.F. Serfozo, Basics of Applied Stochastic Processes, Springer-Verlag New York-Berlin, 2009.
  • [11] D.W. Stroock DW, An Introduction to Markov Processes, Springer-Verlag New York-Berlin, 2005.
  • [12] T. Martyn, ”The discrete charm of iterated function systems”. [Online]. Available: https://doi.org/10.48550/arXiv.2410.15139
  • [13] W. Feller, An Introduction to Probability Theory and Its Applications (3th Ed.), Volume I, John Wiley & Sons, 1968.
  • [14] C. Meyer, Matrix analysis and applied linear algebra, SIAM, 2000.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-2c61a7e6-231e-4c75-9a5a-aecb4492425e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.