PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Influence of Lanthanum Dopant on the Structure and Electric Properties of BaBi2Nb2O9 Ceramics

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper reports the consequences of lanthanum modifications of barium bismuth niobiate (BaBi2 Nb2 O9) ceramics. The discussed materials were prepared by solid state synthesis and a one-step sintering process. The investigations are focused on dielectric aspects of the modification. The presented results reveal that the trivalent lanthanum ions incorporate twovalent barium ions, which is connected with the creation of A-site cationic vacancies as well as oxygen vacancies. Such a scenario results in significant decreasing in grain boundaries resistivity. The activation energy of grain boundaries conductivity is significantly reduced in the case of lanthanum admixture.
Twórcy
  • University of Silesia, Faculty of Science snd Technology, Institute of Materials Engineering, 12, Zytnia Str., 41-200 Sosnowiec, Poland
autor
  • University of Silesia, Faculty of Science snd Technology, Institute of Materials Engineering, 12, Zytnia Str., 41-200 Sosnowiec, Poland
autor
  • University of Silesia, Faculty of Science snd Technology, Institute of Materials Engineering, 12, Zytnia Str., 41-200 Sosnowiec, Poland
autor
  • University of Silesia, Faculty of Science snd Technology, Institute of Materials Engineering, 12, Zytnia Str., 41-200 Sosnowiec, Poland
autor
  • University of Silesia, Faculty of Science snd Technology, Institute of Materials Engineering, 12, Zytnia Str., 41-200 Sosnowiec, Poland
autor
  • University of Silesia, Faculty of Science snd Technology, Institute of Materials Engineering, 12, Zytnia Str., 41-200 Sosnowiec, Poland
Bibliografia
  • [1] B. Aurivillius, Mixed bismuth oxides with layer lattices: I. The structure type CaNb2Bi2O9, Arkiv For. Kemi (1), 463-480 (1949).
  • [2] B. Aurivillius, Mixed bismuth oxides with layer lattices: II. Structure of Bi4Ti3O12, Arkiv For. Kemi (1), 499-512 (1949).
  • [3] B. Aurivillius, Mixed bismuth oxides with layer lattices: III. Structure of BaBi4Ti4O15, Arkiv For. Kemi (2), 519-527 (1950).
  • [4] P. Millán, A. Castro, J. B. Torrance, The first doping of lead2+ into the bismuth oxide layers of the aurivillius oxides, MRS Bull. 28(2), 117-122 (1993).
  • [5] A. Moure, Review and perspectives of Aurivillius structures as a lead-free Piezoelectric system, Appl. Sci. 8 (1), 62 2018.
  • [6] P. Millan, A. Ramirez, A. Castro, Substitutions of smaller Sb3+and Sn2+cations for Bi3+ in Aurivillius-like phases, J. Mater. Sci. 14, 1657-1660 (1995).
  • [7] A. Castro, P. Millan, R. Enjalbert, Structural evolution of the Aurivillius framework in the solid solutions Bi2WO6-Sb2WO6, MRS Bull. 30 (7), 871-882 (1995).
  • [8] M. Dion, M. Ganne, Stabilite relative des types structuraux Ca2TlTa5O15 et bronze quadratique de tungstene, MRS Bull. 15 (c), 121-128 (1980).
  • [9] L. E. Cross, Relaxor ferroelectrics, Ferroelectrics 76, 241-267 (1997).
  • [10] A. A. Bokov, Z. G. Ye, Recent progress in relaxor ferroelectrics with perovskite structure, J. Mater. Sci. 41 (1), 31-52 (2006).
  • [11] V. V. Shvartsman, D. C. Lupascu, Lead-free relaxor ferroelectrics, J. Am. Ceram. Soc. 95 (1), 1-26 (2012).
  • [12] M. Adamczyk, L. Kozielski, R. Zachariasz, M. Pawełczyk, L. Szymczak, Structural, dielectric specroscopy and internal friction correlation in BaBi2Nb2O9 ceramics, Arch. Metall. Mater. 59(1), 40-43 (2014).
  • [13] Y. Shimakawa, Y. Kubo, Crystal structure and ferroelectric properties of ABi2Ta2O9 (A=Ca, Sr, and Ba), Phys. Rev. 61 (10), 6559-6564 (2000).
  • [14] R. Macquart, B. J. Kennedy, T. Vogt, Ch. J. Howard, Phase transition in BaBi2Nb2O9: Implications for layered ferroelectrics, Phys. Rev. 66, 212102-1-212102-4 (2002).
  • [15] B. R. Kannan, B. H. Venkataraman, Dielectric relaxor and conductivity characteristics of undoped and samarium doped barium bismuth niobate ferroelectric ceramics, Ferroelectrics 43 (4-6), 82-89 (2015).
  • [16] M. K. Adak, A. Mukherjee, A. Chowdhury, U. K. Ghorai, D. Dhak, Structure-property correlation of Ba1-xCuxBi2(Nb1-xTax)2O9 ferroelectric nano ceramics prepared by chemical route, J. Alloys Compd. 740, 203-211 (2018).
  • [17] M. X. Façanha, F. F. Carmo, J. P. C. Nascimento, T. O. Sales, W. Q. Santos, A. S. Gouveia-Neto, C. J. Silva, A. S. B. Sombra, A novel white-light emitting BaBi2Nb2O9: Li+/Tm3+/Er3+/Yb3+upconversion phosphor, J. Lumin. 204, 539-547 (2018).
  • [18] Y. Wu, Ch. Nguzen, S. Seraji, M. Forbess, S. J. Limmer, Processing and Properties of Strontium Bismuth Vanadate Ferroelectric Ceramics, J. Am. Ceram. Soc. 84, 2882-2888 (2001).
  • [19] M. Adamczyk, L. Kozielski, M. Pilch, M. Pawełczyk, A. Soszyński, Influence of vanadium dopant on relaxor behavior of BaBi2Nb2O9 ceramics, Ceram. Int. 39 (4), 4589-4595 (2013).
  • [20] C. Karthik, K. B. R. Varma, M. Maglione, J. Etourneau, Relaxor characteristics of layered Ba1-(3⁄2)xLaxBi2Nb2O9 Ceramics, J. Appl. Phys. 101 (1), 2-8 (2007).
  • [21] Y. Shimakawa, Y. Kubo, Y. Tauchi, H. Asano, T. Kamiyama, F. Izumi, Z. Hiroi, Crystal and electronic structures of Bi4-xLaxTi3O12 ferroelectric materials, Appl. Phys. Lett. 79 (17), 2791-2793 (2001).
  • [22] J. Zhu, X.B. Chen, Z. P. Zhang, J. C. Shen, Raman and X-ray photoelectron scattering study of lanthanum-doped strontium bismuth titanate, Acta Mater. 53 (11), 3155-3162 (2005).
  • [23] B. A. Boukamp, A Linear Kronig-Kramers Transform Test for Immittance Data Validation, J. Electrochem. Soc. 142 (6), 1885-1894 (1995)
  • [24] B. A. Boukamp, Electrochemical impedance spectroscopy in solid state ionics: recent advances, Solid State Ion. 169 (1-4), 65-73 (2004).
  • [25] X. P. Jiang, X. J. Wang, J. X. Wen, C. Chen, N. Tu, X. H. Li, Microstructure and electrical properties of Mn-modified bismuth-layer Na0.25K0.25Bi2.5Nb2O9 Ceramics, J. Alloys Compd. 544, 125-128 (2012).
  • [26] C. M. Wang, J. F. Wang, L. M. Zheng, Enhancement of the piezoelectric properties of sodium lanthanum bismuth titanate (Na0.5La0.5Bi4Ti4O15) through modification with cobalt, Mater. Sci. Eng. B 171, 79-85 (2010).
  • [27] M. Adamczyk, Z. Ujma, M. Pawełczyk, Dielectric properties of BaBi2Nb2O9 ceramics, J. Mater. Sci. 41, 5317-5322 (2006).
  • [28] S. E. Park, J. Cho, T. K. Song, M. H. Kim, S. S. Kim, H. S. Lee, Ionic Doping Effects in SrBi2Nb2O9 Ferroelectric Ceramics, J. Electroceramics 13 (1-3), 51-54 (2004).
  • [29] H. T. Martirena, J. C. Burfoot, Grain-size effects on properties of some ferroelectric ceramics, J. Phys. Condens. Matter. 7, 3182-3192 (1974).
  • [30] D. C. Sinclair, T. B. Adams, F. D. Morrison, A. R. West, CaCu3Ti4O12: One-step internal barrier layer capacitor, Appl. Phys. Lett. 80, 2153-2155 (2002).
  • [31] J. Muscat, A. Wander, N. M. Harrison, On the prediction of band gaps from hybrid functional theory, Chem. Phys. Lett. 342, 397-401 (2001).
  • [32] M. Adamczyk, L. Kozielski, M. Pilch, Impedance Spectroscopy of BaBi2Nb2O9 Ceramics, Ferroelectrics 417, 1-8 (2011).
  • [33] S. Selvasekarapandian, M. Vijaykumar, The ac impedance spectroscopy studies on LiDyO2, Mater. Chem. Phys. 80, 29-33 (2003).
  • [34] G. Goodman, R. C. Buchanan, T. G. Reynolds, Ceramic materials for electronics, Buchanan Marcel Dekker, New York, (1986).
  • [35] P. Dhak, D. Dhak, M. Das, K. Pramanik, P. Pramanik, Impedance spectroscopy study of LaMnO3 modified BaTiO3 ceramics, Mater. Sci. Eng. B 164, 165-171 (2009).
  • [36] A. Peláiz-Barranco, I. González-Carmenate, F. Calderón-Piñar, E. Torres-García, AC behavior and PTCR effect in PZN-PT-BT ferroelectric ceramics, Solid State Commun. 132 (7), 431-435 (2004).
  • [37] B. H. Venkataraman, K. B. R. Varma, Impedance and dielectric studies of ferroelectric SrBi2Nb2O9 ceramics, J. Phys. Chem. Solids. 64 (11), 2105-2112 (2003).
  • [38] L. Zhigao, J. P. Bonnet, J. Ravez, J. M. Rjzau, P. Hagenmuller, An impedance study of Pb2KNb5O15 ferroelectric ceramics, J. Phys. Chem. Solids 53 (1), 1-9 (1991).
  • [39] J. S. Kim, J. N. Kim, Impedance Spectra near the Phase Transition Temperature of Potassium Lithium Niobate Crystals, Jpn. J. Appl. Phys. 39, 3502-3505 (2000).
  • [40] S. K. Kim, M. Miyayama, H. Yanagida, Electrical anisotropy and a plausible explanation for dielectric anomaly of Bi4Ti3O12 single crystal, MRS Bull. 31, 121-131 (1996).
  • [41] S. Kumar, K.B.R. Varma, Influence of lanthanum doping on the dielectric, ferroelectric and relaxor behaviour of barium bismuth titanate ceramics, J. Phys. D 42 (7), 075405-075414 (2009).
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-2c5b3625-6de2-4cf2-b9ce-a75e6d702a26
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.