PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Viscoplastic properties of an MR fluid in a damper

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The aim of this paper is to mathematically describe and analyze the viscoplastic properties of a magnetorehological (MR) fluid. The scope of the discussed research has been limited to the T-MR SiMR 132 DG damper prototype. Laboratory tests have been performed on a specially developed experimental stand with a kinematic excitation rule. On the basis of the experimental data, conventional yield points and maximum shear stresses for the analyzedMR fluid, including variable shear rate, current intensity flowing through a solenoid, liquid temperature and gap height have been analyzed. Basing on the acquired results, the parameters of Bodner-Partom constitutive equations have been estimated. The identified viscoplastic model has been used to carry out simulation tests that enabled verification of the numerical results and real experimental data.
Słowa kluczowe
Rocznik
Strony
1061--1070
Opis fizyczny
Bibliogr. 24 poz., rys., tab.
Twórcy
autor
  • Institute of Aviation, Centre of New Technologies, Warsaw, Poland
autor
  • Warsaw University of Technology, Institute of Machines Design Fundamentals, Warsaw, Poland
Bibliografia
  • 1. Bajkowski J., Dudziak B., Zalewski R., 2008, Experimental research of a magnetorheological damper with various crevieses – modeling and simulations, Machine Dynamics Problems, 32, 14-23
  • 2. Bajkowski J., Jasiński M., Mączak J., Radkowski S., Zalewski R., 2012, The active magnetorheological support as an element of damping of vibrations transferred from the ground to large-scale structure supports, Key Engineering Materials, 518, 350-357
  • 3. Bodner S.R., Partom Y., 1975, Constitutive equations for elastic-viscoplastic strain-hardening materials, Journal of Applied Mechanics, 42, 385-389
  • 4. Carlson J.D., Goncalves F., 2008, Controllable fluids come of age, 11th International Conference on New Actuators/5th International Exhibition on Smart Actuators and Drive, Conference Proceedings Book Series: Actuator-International Conference and Exhibition on New Actuators and Drive Systems, 477-480
  • 5. Carlson J.D., Weiss D., 1994, A growing attraction to magnetic fluids, Machine Design, 66, 61-66
  • 6. Dyke S.J., Spencer B.F., Sain M.K., Carlson J.D., 1996, Modeling and control of magnetorheological dampers for seismic response reduction, Smart Materials and Structures, 5, 5, 565-575
  • 7. Goncalves F.D., 2005, Characterizing the behavior of magnetorheological fluids at high velocities and high shear rates, PhD thesis, Virginia Polytechnic, Blacksburg
  • 8. Holnicki-Szulc J., Graczykowski C., Mikułowski G., Mroz A., Pawłowski P., 2009, Smart technologies for adaptive impact absorption, Solid State Phenomena, 154, 187-194
  • 9. Kłosowski P., Zagubień A., Woźnica K., 2004, Investigation on rheological properties of technical fabric Panama, Archive of Applied Mechanics, 73, 9/10, 661-681
  • 10. Maślanka M., Sapiński B., Snamina J., 2007, Experimental study of vibration control of a cable with an attached MR damper, Journal of Theoretical and Applied Mechanics, 45, 4, 893-917
  • 11. Mikułowski G., Holnicki-Szulc J., 2007, Adaptive landing gear conceptfeedback control validation, Smart Materials and Structures, 16, 2146-2158
  • 12. Pyrz M., Zairi F., 2007, Identification of viscoplastic parameters of phenomenological constitutive equations for polymers by deterministic and evolutionary approach, Modeling and Simulation in Materials Science and Engineering, 15, 85-103
  • 13. Pyrz M, Zalewski R., 2010, Modeling of granular media submitted to internal underpressure, Mechanics Research Communications, 37, 2, 141-144
  • 14. Rowley M.A., Thornton E.A., 1996, Constitutive modelling of the visco-plastic response hastelloy-X and aluminum alloy 8009, Journal of Engineering Materials and Technology, 118, 1, 9-27
  • 15. Sapiński B., Filuś J., 2003, Analysis of parametric models of MR linear damper, Journal of Theoretical and Applied Mechanics, 41, 215-240
  • 16. Skalski P., 2010, Analysis of viscoplastic properties of a magnetorheological fluid in operational conditions of a damper’s work, Ph.D. thesis, Warsaw University of Technology 17. Wu W., 2006, Theoretical and experimental study on cable vibration reduction with MR damper, Ph.D. thesis, Louisiana State University
  • 18. Zaıri F., Woznica K., Nait-Abdelaziz M., Gloaguen J.M., 2007, Elasto-viscoplastic constitutive equations for the description of glassy polymers behaviour at constant strain rate, Journal of Engineering Materials and Technology, 129, 1, 29-35
  • 19. Zalewski R., 2010, Constitutive model for special granular structures, International Journal of Non-Linear Mechanics, 45, 3, 279-285
  • 20. Zalewski R., Nachman J., Shillor M., Bajkowski J., 2014, Dynamic model for a magnetorheological damper, Applied Mathematical Modelling, 38, 2366-2376
  • 21. Zalewski R., Pyrz M., 2010, Modeling and parameter identification of granular plastomer conglomerate submitted to internal underpressure, Engineering Structures, 32, 8, 2424-2431
  • 22. Zalewski R., Pyrz M., 2013, Experimental study and modeling of polymer granular structures submitted to internal underpressure, Mechanics of Materials, 57, 75-85
  • 23. Zalewski R., Pyrz M., Wolszakiewicz T., 2010, Modeling of solid propellants viscoplastic behavior using evolutionary algorithms, Central European Journal of Energetic Materials, 7, 4, 289-300
  • 24. Zalewski R., Wolszakiewicz T., 2011, Analysis of uniaxial tensile tests for homogeneous solid propellants under various loading conditions, Central European Journal of Energetic Materials, 8, 4, 223-231
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-2c5a23e2-0336-4684-a818-182c42c992c1
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.