Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
This manuscript addresses the treatment of explosives-impacted mining wastewaters (EIMWW) using ion-exchange to remove elevated levels of ammonia. Repeated batch loading-regeneration cycles were conducted for two commercially available zeolite media used in the treatment of ammonia-laden EIMWW to establish the effects of competing ions and regeneration solution composition. The Northern Ontario EIMWW tested contained 3.87 meq/L total ammonia (TA) as well as 2.85 mg/L K+ and 3.9 meq/L Ca2+. The media studied were a natural clinoptilolite and a modified clinoptilolite (SIR-600). Five regenerant solutions with different NaCl and KCl concentrations were evaluated using batch tests. The presence of potassium in the regenerant was found to hinder the TA exchange capacity of both zeolites. The SIR-600 and the natural clinoptilolite used in conjunction with the 10% NaCl solution featured the best TA exchange capacities, 0.46 ± 0.02 meq TA/g and 0.36 ± 0.05 meq TA/g, respectively. The batch tests showed that both media had a slight preference for K+ over TA. The continuous flow column tests performed using SIR-600 media greatly accentuated the selectivity of K+ over TA. In reaching the same 0.55 meq TA/L breakthrough level, the same modified zeolite column was able to treat five times more volume of a synthetic TA solution than EIMWW.
Wydawca
Czasopismo
Rocznik
Tom
Strony
58--71
Opis fizyczny
Bibliogr. 34 poz.
Twórcy
autor
- Department of Civil Engineering, University of Ottawa, 161 Louis Pasteur Pvt., Ottawa, Ontario, K1N 6N5, Canada
autor
- Department of Civil Engineering, University of Ottawa, 161 Louis Pasteur Pvt., Ottawa, Ontario, K1N 6N5, Canada
autor
- Department of Civil Engineering, University of Ottawa, 161 Louis Pasteur Pvt., Ottawa, Ontario, K1N 6N5, Canada
autor
- Dowclear Inc, 627 South Island Park Drive, Manotick, Ontario, K4M 1J2, Canada
Bibliografia
- [1] Jermakka J, Wendling L, Sohlberg E, Heinonen H, Vikman M. Potential Technologies for the Removal and Recovery of Nitrogen Compounds From Mine and Quarry Waters in Subarctic Conditions. Critical Reviews in Environmental Science and Technology 2015;45:703-48. https://doi/10.1080/10643389.2014.900238.
- [2] Bailey BL, Smith LJD, Blowes DW, Ptacek CJ, Smith L, Sego DC. The Diavik Waste Rock Project: Persistence of contaminants fromblasting agents in waste rock effluent. Applied Geochemistry 2013;36:256-70. https://doi.org/10.1016/j.apgeochem.2015.10.010.
- [3] Zaitsev G, Mettanen T, Langwaldt J. Removal of ammonium and nitrate from cold inorganic mine waterby fixed-bed biofilm reactors. Minerals Engineering 2008;21:10-5. https://doi:10.1016/j.mineng.2007.08.014.
- [4] Koren DW, Gould WD, Bédard P. Biological removal of ammonia and nitrate fromsimulated mine and mill effluents. Hydrometallurgy 2000;56_2000:127-44. https://doi.org/10.1016/S0304-386X(99)00088-2.
- [5] EC-HC (Environment Canada and Health Canada). Priority Substances List Assessment - Ammonia in the Aquatic Environment. 2001. https://www.canada.ca/en/healthcanada/services/environmental-workplace-health/reportspublications/environmental-contaminants/canadianenvironmental-protection-act-1999-priority-substances-listassessment-report-ammonia-aquatic-environment.html.
- [6] Jorgensen TC, Weatherley LR. Ammonia removal from wastewater by ion exchange in the presence of organic contaminants. Water Research 2003;37(8):1723-8. https://doi/10.1016/S0043-1354(02)00571-7.
- [7] Weatherley LR, Miladinovic ND. Comparison of the ion exchange uptake of ammonium ion onto New Zealand clinoptilolite and mordenite. Water Research 2004;38(20): 4305-12. https://doi:10.1016/j.watres.2004.08.026.
- [8] Almutairi A, Weatherley LR. Intensification of ammonia removal from waste water in biologically active zeolitic ion exchange columns. J. of Environmental Management 2015;160:128-38. https://doi:10.1016/j.jenvman.2015.05.033.
- [9] Carrera J, Baeza JA, Vicent T, Lafuente J. Biological nitrogen removal of high-strength ammonium industrial wastewater with two-sludge system. Water Research 2003;37(17): 4211-21. https://doi/10.1016/S0043-1354(03)00338-5.
- [10] Halim AA, Aziz HA, Johari MAM, Ariffin KS. Comparison study of ammonia and COD adsorption on zeolite, activated carbon and composite materials in landfill leachate treatment. Desalination 2010;262(1):31-5. https://doi.org/10.1016/j.desal.2010.05.036.
- [11] Lee S-M, Jung J-Y, Chung Y-C. Measurement of ammonia inhibition of microbial activity in biological wastewater treatment process using dehydrogenase assay. Biotechnology Letters 2000;22(12):991-4. https://doi.org/10.1023/A:1005637203643.
- [12] Halling-Sørensen B, Jorgensen SE. Removal of nitrogen compounds from wastewater. Amsterdam: Elsevier; 1993. 1993.
- [13] Ding Y, Sartaj M. Optimization of ammonia removal by ionexchange resin using response surface methodology. Int. J. Environmental Science & Technology 2016;13(4):985-94. https://doi/10.1007/s13762-016-0939-x.
- [14] Hedström A, Rastas Amofah L. Adsorption and desorption of ammonium by clinoptilolite adsorbent in municipal wastewater treatment systems. J. Environmental Engineering Science 2008;7(1):53-61. https://doi.org/10.1139/S07-029.
- [15] Malovanyy A, Sakalova H, Yatchyshyn Y, Plaza E, Malovanyy M. Concentration of ammonium from municipalwastewater using ion exchange process. Desalination 2013;329:93-102. https://doi.org/10.1016/j.desal.2013.09.009.
- [16] Dong S, Sartaj M. Statistical analysis of thermal and nonthermal effects of sequential microwave/aeration process for the removal of ammonia from aqueous solution. Desalination &Water Treatment 2016;57(42):20005-15. https://doi.org/10.1016/j.jece.2015.10.029.
- [17] Huang J, Kankanamge NR, Chow C, Welsh DT, Li T, Teasdale PR. Removing ammonium from water and wastewater using cost-effective adsorbents: A review. J. of Environmental Science 2018;63:174-97. https://doi.org/10.1016/j.jes.2017.09.009.
- [18] Klieve JR, Semmens MJ. An evaluation of pretreated natural zeolites for ammonium removal. Water Research 1980;14(2): 161-8.
- [19] Hlavay J, Vigh GY, Olaszi V, Inczédy J. Investigations on natural Hungarian zeolite for ammonia removal. Water Research 1982;16(4):417-20. https://doi.org/10.1016/0043-1354(82)90165-8.
- [20] Guo X, Zeng L, L, Li X, Park H-S. Ammonium and potassium removal for anaerobically digested wastewater using natural clinoptilolite followed by membrane pretreatment. J. Hazardous Materials 2008;151(1):125-33. https://doi.org/10.1016/j.jhazmat.2007.05.066.
- [21] Montégut G, Michelin L, Brendlé J, Lebeau B, Patarin J. Ammonium and potassium removal from swine liquid manure using clinoptilolite, chabazite and faujasite zeolites. J. Environmental Management 2016;167:147-55. https://doi.org/10.1016/j.jenvman.2015.11.027.
- [22] Ding Y, Sartaj M. Statistical analysis and optimization of ammonia removal from aqueous solution by zeolite using factorial design and response surface methodology. J. Environmental Chemical Engineering 2015;3(2):807-14. https://doi.org/10.1016/j.jece.2015.03.025.
- [23] Ames LL. The cation sieve properties of clinoptilolite. American Mineralogist 1960;45(5-6):689-700.
- [24] Leyva-Ramos R, Aguilar-Armenta G, Gonzalez- Gutierrez LV, Mendoza-Barron J. Ammonia exchange on clinoptilolite from mineral deposits located in Mexico, J. Chemical Technolology & Biotechnology 2004;79(6):651-7. https://doi.org/10.1002/jctb.1035.
- [25] Chen JP, Chua M-L, Zhang B. Effects of competitive ions, humic acid, and pH on removal of ammonium and phosphorous from the synthetic industrial effluent by ion exchange resins. Waste Management 2002;22(2002):711-9. https://doi.org/10.1016/S0956-053X(02)00051-X.
- [26] Guo X, Zeng L, Jin X. Advanced regeneration and fixed-bed study of ammonium and potassium removal from anaerobic digested wastewater by natural zeolite. J. Environmental Science 2013;25(5):954-61. https://doi.org/10.1016/S1001-0742(12)60115-6.
- [27] Casadellá A, Kuntke P, Schaetzle O, Loos K. Clinoptilolitebased mixed matrix membranes for the selective recovery of potassium and ammonium. Water Research 2016;90(1): 62-70. https://doi.org/10.1016/j.watres.2015.12.017.
- [28] The Seed Supply. Granular Zeolite [Online]. Available: https://theseedsupply.com/products/granular-zeolite. [Accessed 20 April 2017].
- [29] ResinTechInc. Resintech SIR-600. [Online]. Available: https://www.resintech.com/rks_images/shopcart/pdf_specs_90253.pdf; 2017 [Accessed: 26-Jun-2017].
- [30] Chartrand ZG. The selective ion-exchange removal of ammonia from mining wastewater. MASc Thesis. Canada: Dept. of Civil Engineering, Université d'Ottawa/University of Ottawa; 2018.
- [31] APHA (American Public Health Association). Standard methods for the examination of water and waste water, 21st edn. Washington, DC. 2005. 2005.
- [32] Inglezakis VJ. In: S.G.Poulopoulos, S (Online Service, S.Poulopoulos, editors. Adsorption and ion exchange, Chapter 4 in Adsorption, ion exchange and catalysis design of operations and environmental applications. 1st ed. 2006. https://doi.org/10.1016/B978-0-444-52783-7.X5000-9. Amsterdam: Amsterdam, 2006.
- [33] Jama MA, Yücel H. Equilibrium studies of sodium-ammonium, potassium-ammonium, and calcium-ammonium exchanges on clinoptilolite zeolite. Separation Science & Technology 1989;24(15):1393-416. https://doi.org/10.1080/01496398908050659.
- [34] Margeta K, Zabukovec Logar N, Siljeg M, Farkas A. Natural zeolites in water treatment - how effective is their use. In: Elshorbagy W, Chowdhury RK, editors. Water Treatment. Rijeka: IntechOpen; 2013. p. 81-112. https://doi.org/10.5772/50738.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-2c570cf6-cf37-4429-a027-0697612e9cf3